6-1 | (2018-05-14) Assistant linguist (French)
Assistant Linguist [French]
Job Title:
Assistant Linguist [French]
Linguistic Field(s):
Phonetics, Phonology, Morphology, Semantics, Syntax, Lexicography, NLP
Location:
Paris, France
Job description:
The role of the Assistant Linguist is to annotate and review linguistic data in French. The Assistant Linguist will also contribute to a number of other tasks to improve natural language processing. The tasks include:
-
Providing phonetic/phonemic transcription of lexicon entries
-
Analyzing acoustic data to evaluate speech synthesis
-
Annotating and reviewing linguistic data
-
Labeling text for disambiguation, expansion, and text normalization
-
Annotating lexicon entries according to guidelines
-
Evaluating current system outputs
-
Deriving NLP data for new and on-going projects
-
Be able to work independently with confidence and little oversight
Minimum Requirements:
-
Native speaker of French and fluent in English
-
Extensive knowledge of phonetic/phonemic transcriptions
-
Familiarity with TTS tools and techniques
-
Experience in annotation work
-
Knowledge of phonetics, phonology, semantics, syntax, morphology or lexicography
-
Excellent oral and written communication skills
-
Attention to detail and good organizational skills
Desired Skills:
-
Degree in Linguistics or Computational Linguistics or Speech processing
-
Ability to quickly grasp technical concepts; learn in-house tools
-
Keen interest in technology and computer-literate
-
Listening Skills
-
Fast and Accurate Keyboard Typing Skills
-
Familiarity with Transcription Software
-
Editing, Grammar Check and Proofing Skills
-
Research Skills
CV + motivation letter in English: maroussia.houimli@adeccooutsourcing.fr
|
6-2 | (2018-05-20) Postdoc position in social robotics, Uppsala University, Sweden
** Postdoc position in social robotics**
Uppsala Social Robotics Lab
Department of Information Technology
Uppsala University, Sweden
Uppsala University is an international research university focused on the development of science and education. Our most important assets are all the individuals who with their curiosity and their dedication make Uppsala University one of Sweden’s most exciting work places. Uppsala University has 45.000 students, 6,800 employees and a turnover of SEK 6,300 million. The Department of Information Technology (http://www.it.uu.se/first?lang=en) is with approximately 275 employees, including 110 senior faculty and 120 PhD students, and more than 4000 students enrolled annually, one of Uppsala University’s largest departments.
The Uppsala Social Robotics Lab (http://hri.research.it.uu.se/) led by Dr. Ginevra Castellano aims to design and develop robots that learn to interact socially with humans and bring benefits to the society we live in, for example in application areas such as education and assistive technology.
We are receiving expressions of interest for an upcoming two-year postdoctoral researcher position in social robotics, specifically on the topic of social learning for co-adaptive social human-robot interactions.
The PhD student will have the opportunity to work in one or more projects on personalised and co-adaptive human-robot interaction, funded by the Swedish Research Council and the Swedish Foundation for Strategic Research, in collaboration with KTH Stockholm and the University of Gothenburg.
The researcher will be part of the Uppsala Social Robotics Lab at the Division of Visual Information and Interaction of the Department of Information Technology.
The Uppsala Social Robotics Lab’s focus is on natural interaction with social artefacts such as robots and embodied virtual agents. This domain concerns bringing together multidisciplinary expertise to address new challenges in the area of social robotics, including mutual human-robot co-adaptation, multimodal multiparty natural interaction with social robots, multimodal human affect and social behavior recognition, multimodal expression generation, robot learning from users, behavior personalization, effects of embodiment (physical robot versus embodied virtual agent) and other fundamental aspects of human-robot interaction (HRI). State of the art robots are used, including the Pepper, Nao and Furhat robotic platforms. The Lab is involved in a number of different national and EU-funded projects in collaborations with international partners.
How to send expressions of interest:
To express their interest, candidates should submit a CV, a 1-page research statement and a cover letter (indicating the name of referees and the earliest possible start date) to Ginevra Castellano (ginevra.castellano@it.uu.se) by the 31st of May.
Requirements:
Qualifications: The candidates must have a PhD degree in human-robot interaction or related areas relevant to the postdoc topic. Good programming skills and ability to conduct user studies are required. The PhD position is highly interdisciplinary and requires an understanding and/or interest in psychology and social sciences. Experience in machine learning for human-robot interaction is appreciated.
|
6-3 | ( 2018-05-20) Post Doctoral Position (12 months), INRIA, Nancy, France
Post Doctoral Position (12 months)
Natural language processing: automatic speech recognition system using deep neural networks without out-of-vocabulary words
_______________________________________
- Location:INRIA Nancy Grand Est research center, France
- Research theme: PERCEPTION, COGNITION, INTERACTION
- Project-team: Multispeech
Deadline to apply: June 6th
- Scientific Context:
More and more audio/video appear on Internet each day. About 300 hours of multimedia are uploaded per minute. In these multimedia sources, audio data represents a very important part. If these documents are not transcribed, automatic content retrieval is difficult or impossible. The classical approach for spoken content retrieval from audio documents is an automatic speech recognition followed by text retrieval.
An automatic speech recognition system (ASR) uses a lexicon containing the most frequent words of the language and only the words of the lexicon can be recognized by the system. New Proper Names (PNs) appear constantly, requiring dynamic updates of the lexicons used by the ASR. These PNs evolve over time and no vocabulary will ever contains all existing PNs. When a person searches for a document, proper names are used in the query. If these PNs have not been recognized, the document cannot be found. These missing PNs can be very important for the understanding of the document.
In this study, we will focus on the problem of proper names in automatic recognition systems. The problem is how to model relevant proper names for the audio document we want to transcribe.
- Missions:
We assume that in an audio document to transcribe we have missing proper names, i.e. proper names that are pronounced in the audio document but that are not in the lexicon of the automatic speech recognition system; these proper names cannot be recognized (out-of-vocabulary proper names, OOV PNs). The purpose of this work is to design a methodology how to find and model a list of relevant OOV PNs that correspond to an audio document.
Assuming that we have an approximate transcription of the audio document and huge text corpus extracted from internet, several methodologies could be studied:
-
From the approximate OOV pronunciation in the transcription, generate the possible writings of the word (phoneme to character conversion) and search this word in the text corpus.
-
A deep neural network can be designed to predict OOV proper names and their pronunciations with the training objective to maximize the retrieval of relevant OOV proper names.
The proposed approaches will be validated using the ASR developed in our team.
Keywords: deep neural networks, automatic speech recognition, lexicon, out-of-vocabulary words.
- Bibliography
[Mikolov2013] Mikolov, T., Chen, K., Corrado, G. and Dean, J. ?Efficient estimation of word representations in vector space?, Workshop at ICLR, 2013.
[Deng2013] Deng, L., Li, J., Huang, J.-T., Yao, K., Yu, D., Seide, F., Seltzer, M., Zweig, G., He, X., Williams, J., Gong, Y. and Acero A. ?Recent advances in deep learning for speech research at Microsoft?, Proceedings of ICASSP, 2013.
[Sheikh2016] Sheihk, I., Illina, I., Fohr, D., Linarès, G. ?Improved Neural Bag-of-Words Model to Retrieve Out-of-Vocabulary Words in Speech Recognition?. Interspeech, 2016.
[Li2017] J. Li, G. Ye, R. Zhao, J. Droppo, Y. Gong , ?Acoustic-to-Word Model without OOV?, ASRU, 2017.
- Skills and profile: PhD in computer science, background in statistics, natural language processing, experience with deep learning tools (keras, kaldi, etc.) and computer program skills (Perl, Python).
- Additional information:
Supervision and contact: Irina Illina, LORIA/INRIA (illina@loria.fr), Dominique Fohr INRIA/LORIA (dominique.fohr@loria.fr) https://members.loria.fr/IIllina/, https://members.loria.fr/DFohr/
Additional links : Ecole Doctorale IAEM Lorraine
Deadline to apply: June 6th
Selection results: end of June
Duration :12 of months.
Starting date: between Nov. 1st 2018 and Jan. 1st 2019 Salary: about 2.115 euros net, medical insurance included
The candidates must have defended their PhD later than Sept. 1st 2016 and before the end of 2018.
The candidates are required to provide the following documents in a single pdf or ZIP file:
-
CV including a description of your research activities (2 pages max) and a short description of what you consider to be your best contributions and why (1 page max and 3 contributions max); the contributions could be theoretical or practical. Web links to the contributions should be provided. Include also a brief description of your scientific and career projects, and your scientific positioning regarding the proposed subject.
-
The report(s) from your PhD external reviewer(s), if applicable.
-
If you haven't defended yet, the list of expected members of your PhD committee (if known) and the expected date of defence.
In addition, at least one recommendation letter from the PhD advisor should be sent directly by their author(s) to the prospective postdoc advisor.
Help and benefits:
|
6-4 | (2018-05-23) Postdoc and PhD positions at Saarland University, Germany
Postdoc and PhD positions at Saarland University http://www.sfb1102.uni-saarland.de/
The CRC Information Density and Linguistic Encoding (SFB 1102) at Saarland University invites applications for a range of PhD and post-doctoral positions available for its second funding phase (7/2018-6/2022).
The CRC includes 16 research projects drawing upon computational linguistics, psycholinguistics, sociolinguistics, diachronic linguistics, phonetics, discourse linguistics, contrastive linguistics and translatology. We are seeking to recruit 7 Postdocs and 15 PhD students.
For the phonetics community, projects C1 and C4 will be most relevant, but you may want to have a look at the other projects too.
Details on the projects and positions as well as instructions for applications are available at
http://www.sfb1102.uni-saarland.de/?page_id=57
Application deadline: June 20, 2018 Starting date: flexible
|
6-5 | (2018-05-24) Permanent Web Developer position at ELDA, Paris, France
The European Language resources Distribution Agency (ELDA), a company specialised in Human Language Technologies within an international context is currently seeking to fill an immediate vacancy for a permanent Web Developer position.
Under the supervision of the technical department manager, the responsibilities of the Web Developer consist in designing and developing web applications and software tools for linguistic data management. Some of these software developments are carried out within the framework of European research and development projects and are published as free software. Depending on the profile, the Web Developer could also participate in the maintenance and upgrading of the current linguistic data processing toolchains, while being hands-on whenever required by the language resource production and management team.
Profile:
- Bachelor of Science (BAC + 3 / BAC + 4) in Computer Science or a related field
- Proficiency in Python (at least 3 years of experience)
- Hands-on experience in Django
- Hands-on knowledge of a distributed version control system (Git preferred)
- Knowledge of SQL and of RDBMS (PostgreSQL preferred)
- Basic knowledge of JavaScript and CSS
- Basic knowledge of Linux shell scripting
- Practice of free software
- Experience in natural language processing is a strong plus
- Proficiency in French and English, with writing and documentation skills in both languages
- Curious, dynamic and communicative, flexible to work on different tasks in parallel
- Ability to work independently and as part of a multidisciplinary team
- Citizenship (or residency papers) of a European Union country
Applications will be considered until the position is filled. The position is based in Paris.
Salary: Commensurate with qualifications and experience. Benefits: complementary medical insurance; meal vouchers.
Applicants should email a cover letter addressing the points listed above together with a curriculum vitae to:
ELDA 9, rue des Cordelières 75013 Paris FRANCE Mail : job@elda.org
ELDA is acting as the distribution agency of the European Language Resources Association (ELRA). ELRA was established in February 1995, with the support of the European Commission, to promote the development and exploitation of Language Resources (LRs). Language Resources include all data necessary for language engineering, such as monolingual and multilingual lexica, text corpora, speech databases and terminology. The role of this non-profit membership Association is to promote the production of LRs, to collect and to validate them and, foremost, make them available to users. The association also gathers information on market needs and trends.
For further information about ELDA/ELRA, visit: http://www.elra.info
|
6-6 | (2018-05-26) DOCTEUR JUNIOR R&D INFORMATIQUE Synthèse vocale / Intelligence Artificielle
DOCTEUR JUNIOR R&D INFORMATIQUE Synthèse vocale / Intelligence Artificielle RD2 Conseil est un cabinet de recrutement spécialisé sur la recherche de jeunes docteurs pour les besoins en R&D des PME innovantes et entreprises privées, souhaitant se doter de compétences scientifiques pointues et de réelles ressources humaines en matière d’Innovation. Nous recrutons actuellement un(e) Docteur Junior H/F (1er CDI) en Informatique spécialisé sur des problématiques de traitement de la parole, en particulier par l’utilisation de techniques d’Intelligence Artificielle. Notre client est une startup, basée à Paris et créée en 2014, développant et fabriquant un produit novateur et technologique dans le domaine du jouet pour enfants. La société a ainsi développé un objet technologique et interactif éveillant l’imaginaire des enfants sans leur imposer d’images, par le biais d’une « fabrique à histoires » permettant à l’enfant de sélectionner les paramètres de l’histoire qui lui sera racontée : personnage principal, scène, objets clés. Le produit est d’ores et déjà commercialisé auprès des grands acteurs de la distribution (Fnac, Nature et Découverte, Oxybulle…). Notre client vise aujourd’hui à renforcer ses activités de Recherche & Développement par la mise en œuvre de développements technologiques focalisés sur : - la synthèse et la reconnaissance vocale d’une part, pour permettre une meilleure personnalisation des histoires - le développement d’une intelligence artificielle d’autre part par la mise en relation automatique de thèmes et d’idées Dans ce cadre, la société vise le recrutement d’un Docteur Junior (1er CDI impératif) en Informatique (H/F) disposant de compétences fortes en Traitement de la Parole et Intelligence Artificielle Le candidat travaillera sur des problématiques de synthèse vocale et d’IHM liée à la voix. L’entreprise souhaite dans un 1er temps pouvoir intégrer directement le nom de l’enfant dans les histoires racontées par l’objet. Il est donc nécessaire de pouvoir disposer d’un outil de synthèse vocale permettant la conversion de texte en voix (text-to-speech) qui soit d’une qualité suffisante pour que i) le nom de l’enfant soit prononcé correctement, ii) avec une voix très similaire à celle du narrateur et iii) avec une palette d’intonations correspondant au contexte de l’histoire. Les dirigeants de la startup ont également identifié le besoin de proposer des interactions naturelles avec l’objet afin qu’il puisse être utilisé en totale autonomie. Cela amène l’entreprise à étudier la possibilité de le contrôler directement par la voix. Nous recherchons un candidat très autonome, polyvalent, capable d’être force de propositions, d’être créatif et de prendre des initiatives et des responsabilités. Enfin notre client portera une grande attention à la sociabilité du candidat : dans une petite équipe où l’ambiance est particulièrement conviviale, il est indispensable que le / la candidat(e) soit sociable, dynamique, agréable et ait le goût du travail en équipe et des interactions avec les autres. Localisation : Paris Rémunération envisagée : Selon profil Si vous pensez être cette personne, que vous êtes titulaire d’un Doctorat et n’avez jamais été embauché en CDI auparavant (contrainte impérative pour respecter les critères du CIR), nous vous invitons à nous faire parvenir votre CV et lettre de motivation par mail : jesuisunjeunedocteur@rd2conseil.com - sous la référence LNI
|
6-7 | (2018-05-29) PhD Project France-Australia
PhD Project – Call for Applications Situated Learning for Collaboration across Language Barriers
People working in development are often deployed to remote locations where they work alongside locals who speak an unwritten minority language. Outsiders and locals share knowhow and pick up phrases in each other’s languages. They are performing a type of situated learning of language and culture. This situation is found across the world, in developing countries, border zones, and in indigenous communities. This project will develop computational tools to help people work together across language barriers. The research will be evaluated in terms of the the quality of the social interaction, the mutual acquisition of language and culture, the effectiveness of cross-lingual collaboration, and the quantity of translated speech data collected. The ultimate goal is to contribute to the grand task of documenting world’s languages. The project will involve working between France and Australia, and will include fieldwork with a remote indigenous community. We’re looking for outstanding and highly motivated candidates to work on a PhD on this subject. Competencies in two or more of the following areas are mandatory:
• machine learning for natural language processing;
• speech processing for interactive systems;
• participatory design;
• mobile software development;
• documenting and describing unwritten languages.
The project will build on previous work in the following areas: mobile platforms for collecting spoken language data [6, 7]; respeaking as a technique for improving the value of recordings made ‘in the wild’ and an alternative to traditional transcription practices [12, 13]; machine learning of structure in phrase-aligned bilingual speech recordings [2, 3, 4, 8, 9, 10, 11]; participatory design of mobile technologies for working with minority languages [5]; managing multilingual databases of text, speech and images [1]. Some recent indicative PhD theses include: Computer Supported Collaborative Language Documentation (Florian Hanke, 2017); Automatic Understanding of Unwritten Languages (Oliver Adams, 2018); Collecter, Transcrire, Analyser : quand la Machine Assiste le Linguiste dans son Travail de Terrain (Elodie Gauthier, 2018); Enriching Endangered Language Resources using Translations (Antonios Anastasopoulos, in prep); Digital Tool Deployment for Language Documentation (Mat Bettinson, in prep); Bayesian and Neural Modeling for Multi Level and Crosslingual Alignment (Pierre Godard, in prep). Details of the position. Funding includes remission of university fees, a stipend of approximately e17,500 per year, and a travel allowance. The position starts in Fall 2018 (ie from September) and lasts for three years. The research will be supervised by Steven Bird (Charles Darwin University, Australia) and Laurent Besacier (Univ. Grenoble Alpes, France). Acceptance will be subject to approval by both host institutions (Grenoble and Darwin). Given the cross-cultural nature of the project, the successful candidate will have demonstrated substantial experience of cross-cultural living.
Apply. To apply, please contact laurent.besacier@univ-grenoble-alpes.fr and steven. bird@cdu.edu.au including a cover letter, curriculum vitae, academic transcripts and reference letter by your MSc thesis advisor.
Institutions. The University of Grenoble offers an excellent research environment with ample compute hardware to solve hard speech and natural language processing problems, as well as remarkable surroundings to explore over the weekends. Charles Darwin University is a research-intensive university attracting students from over 50 countries. CDU is situated in Australia’s tropical north, in the midst of one of the world’s hot-spots for linguistic diversity and language endangerment. Darwin is a youthful, multicultural, cosmopolitan city in a territory that is steeped in Aboriginal tradition and culture and which enjoys a close interaction with the peoples of Southeast Asia.
References [1] Steven Abney and Steven Bird. The Human Language Project: building a universal corpus of the world’s languages. In Proceedings of the 48th Meeting of the Association for Computational Linguistics, pages 88–97. ACL, 2010.
[2] Oliver Adams, Graham Neubig, Trevor Cohn, and Steven Bird. Learning a translation model from word lattices. In Interspeech 2016, pages 2518–22, 2016.
[3] Antonios Anastasopoulos, Sameer Bansal, David Chiang, Sharon Goldwater, and Adam Lopez. Spoken term discovery for language documentation using translations. In Proceedings of the Workshop on Speech-Centric NLP, pages 53–58, 2017.
[4] Antonios Anastasopoulos and David Chiang. A case study on using speech-to-translation alignments for language documentation. In Proc. Workshop on Use of Computational Methods in Study of Endangered Languages, pages 170–178, 2017.
[5] Steven Bird. Designing mobile applications for endangered languages. In Kenneth Rehg and Lyle Campbell, editors, Oxford Handbook of Endangered Languages. Oxford University Press, 2018.
[6] Steven Bird, Florian R. Hanke, Oliver Adams, and Haejoong Lee. Aikuma: A mobile app for collaborative language documentation. In Proceedings of the Workshop on the Use of Computational Methods in the Study of Endangered Languages. ACL, 2014.
[7] David Blachon, Elodie Gauthiera, Laurent Besacier, Guy-No¨el Kouaratab, Martine Adda-Decker, and Annie Rialland. Parallel speech collection for under-resourced language studies using the Lig-Aikuma mobile device app. In Proceedings of the Fifth Workshop on Spoken Language Technologies for Under-resourced languages, volume 81, pages 61–66, 2016.
[8] V. H. Do, N. F. Chen, B. P. Lim, and M. A. Hasegawa-Johnson. Multitask learning for phone recognition of underresourced languages using mismatched transcription. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 26:501–514, 2018.
[9] Ewan Dunbar, Xuan Nga Cao, Juan Benjumea, Julien Karadayi, Mathieu Bernard, Laurent Besacier, Xavier Anguera, and Emmanuel Dupoux. The zero resource speech challenge 2017. In Automatic Speech Recognition and Understanding (ASRU), 2017 IEEE Workshop on. IEEE.
[10] Long Duong, Antonios Anastasopoulos, David Chiang, Steven Bird, and Trevor Cohn. An attentional model for speech translation without transcription. In Proceedings of the 15th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 949–959, 2016.
[11] Pierre Godard, Gilles Adda, Martine Adda-Decker, Alexandre Allauzen, Laurent Besacier, Helene Bonneau-Maynard, Guy-No¨el Kouarata, Kevin L¨oser, Annie Rialland, and Franc¸ois Yvon. Preliminary experiments on unsupervised word discovery in Mboshi. In Interspeech 2016, 2016.
[12] Mark Liberman, Jiahong Yuan, Andreas Stolcke, Wen Wang, and Vikramjit Mitra. Using multiple versions of speech input in phone recognition. In ICASSP, pages 7591–95. IEEE, 2013.
[13] Anthony C. Woodbury. Defining documentary linguistics. Language Documentation and Description, 1:35–51, 2003.
|
6-8 | (2018-06-02) Ingénieur de recherche en Informatique, statistiques et calcul scientifique IN2P3
Le Laboratoire de Phonétique et Phonologie (http://lpp.in2p3.fr) ouvre un poste permanent d?ingénieur de recherche en Informatique, statistiques et calcul scientifique
Il s?agit d?un concours externe CNRS, dont les détails sont consultables à cette adresse :
- Date de candidature : du 4 juin au 3 juillet 2018
- Concours n° 42
|
6-9 | (2018-06-04) Two funded PhD, University of Glasgow, Great Britain
The University of Glasgow welcomes applications for two funded PhDs in the area of Human-Robot Interaction.
Application deadline: 31 July (for both positions)
Position 1: Human-Robot Interaction for Oilfield Drilling Applications
Eligibility: UK/EU students only
Start date: 1 October 2018
This project will investigate how such human-robot collaborative tasks can be carried out, concentrating on the communication aspects: how the robot communicates its intentions to the human, and how the human can query and interact with the robot’s plan. The research will be driven by oilfield drilling applications, which involve control of complex equipment in a dynamic environment, with an increasing level of automation. Close coordination between the human crew and the automation system is often required, as is building trust between the human and the machine so that the crew understand why the machine acts the way it does and is confident it has taken all available information into account. The project is an EPSRC iCASE award with Schlumberger Gould Research and it is expected that the student will spend some time working with the company in Cambridge.
The student should have excellent experience, enthusiasm and skills in the areas of natural language or multimodal interaction and/or automated planning and reasoning. Applicants must hold a good Bachelor’s or Master’s degree in a relevant discipline.
Position 2: Natural Language Generation for Social Robotics
Eligibility: UK/EU students, or international students who can cover remaining fees from other sources
Start date: 1 January 2019 (or earlier)
In this PhD project, the student will investigate how advanced techniques drawn from natural language generation (NLG) can be combined with practical social robotics applications. The success of the integration will be evaluated through a combination of subjective user evaluations of the social robots as well as technical evaluations of the flexibility and robustness of the underlying systems. In addition to the scientific results of the PhD, an additional goal is to produce a reusable, open-source component for NLG in the context of social robotics, to allow other researchers in this area to benefit from the results of the research.
The PhD student should have excellent experience, enthusiasm and skills in the areas of natural language processing, computational linguistics, multimodal interaction, and/or human-robot interaction. Applicants must hold a good Bachelor’s or Master’s degree in a relevant discipline.
|
6-10 | (2018-06-08) Analytic Linguistic Project Manager (French) ,Paris, France
Analytic Linguistic Project Manager (French)
Job title: Analytical Linguistic Project Manager
Linguistic Field(s): Morphology, Semantics, Syntax, Lexicography, NLP, Phonetics, Phonology Location: Paris, France
Hours: 9H – 17H
Rem: 3790*12
Job description: The role of the Analytic Linguistic Project Manager is to consult with Natural Language Understanding Researchers on creating guidelines and setting standards for a variety of NLP projects as well as to manage the work of a team of junior linguists to achieve high quality data output. This includes:
● Reviewing and annotating linguistic data
● Developing phonetic/phonemic transcription rules
● Analyzing acoustic data to evaluate speech synthesis
● Deriving NLP data for new and on-going projects
● Training, managing, and overseeing the work of a team of junior linguists
● Creating guidelines for semantic, syntactic and morphological projects
● Consulting with researchers and engineers on the development of linguistic databases
● Identifying and assigning required tasks for a project
● Tracking and reporting the team's progress
● Monitoring and controlling quality of the data annotated by the team
● Providing linguistic/operational guidance and support to the team
Job requirements:
● Native speaker French and fluent in English
● Master's degree or higher in Linguistics or Computational Linguistics with experience in semantics, syntax, morphology, lexicography, phonetics, or phonology
● Ability to quickly grasp technical concepts; should have an interest in natural language processing
● Excellent oral and written communication skills
● Good organizational skills
● Previous project management and people management experience
● Knowledge of a programming language or previous experience working in a Linux environment
CV + Motivation letter in English: Maroussia.houimli@adeccooutsourcing.fr
|
6-11 | (2018-06-11) Poste d’Ingénieur Traitement de la Parole , Voxygen, Plemeur Bodou, France
Vous voulez surfer sur la vague de la Voice First Revolution ? Participez à l’aventure Voxygen ! Poste d’Ingénieur Traitement de la Parole VOXYGEN, PME technologique éditrice d'une synthèse vocale reconnue pour ses qualités d’expressivité, renforce son équipe pour répondre aux besoins d’un marché en pleine expansion dans les secteurs de la relation client, des transports, de la robotique… Nous ouvrons un poste d’Ingénieur Traitement de la Parole pour renforcer l'équipe Operations / Customer Success. Principales missions : Définition et maintenance des outils de création de voix, documentation interne Définition des paramètres acoustiques du système de synthèse dans un contexte multilingue Maintenance des voix existantes Contribution aux travaux de R&D sur le contrôle de l’expressivité en synthèse vocale Qualification d’affaires, interface avec le commerce, accompagnement en avant-vente Gestion de projets clients de création de voix Profil recherché : - Ingénieur en traitement de la parole - Maîtrise de la programmation : python, C, C++ - Connaissances en apprentissage automatique - Connaissances ou intérêt pour la linguistique - Bon niveau en anglais professionnel écrit et oral Qualités : - Capacité d’adaptation dans une équipe pluridisciplinaire - Autonome, bonne capacité d’organisation sur un poste multitâche - Dynamique - Bon relationnel – Vous aimez le travail en équipe et la relation clients. Lieu de travail : Côte de Granit Rose – cadre de vie exceptionnel pour les amoureux de la mer et de la nature ! CDI basé à Pleumeur-Bodou (Lannion, 22) – démarrage ASAP – (Possibilité de poste sur Rennes après formation à Pleumeur-Bodou) Rémunération : Selon expérience. Merci d'adresser votre candidature (CV + motivations) à jobs@voxygen.fr
|
6-12 | (2018-06-17) Postdoc / engineer -Computer Science Research Laboratory (LaBRI) and SANPSY (Sleep - Addiction - Neuropsychatry) , Bordeaux
Position : Postdoc / engineer - 12 months, Bordeaux Starting date : 01/10/2018 ------------
Profile : Speech processing, machine learning, artificial intelligence
------------
Location : primary : Computer Science Research Laboratory (LaBRI) secondary : SANPSY (Sleep - Addiction - Neuropsychatry)
------------
Supervisors : Jean-Luc Rouas - LaBRI : jean-luc.rouas@labri.fr - main contact Jean-Philippe Domenger - LaBRI Pierre Philip - SANPSY
------------
Project : 'IS-OSA' (Innovative digital solution for personalised treatment of sleep apnea syndrome) funded by the Nouvelle Aquitaine Region
------------
Project summary :
Sleep deprivation have a strong impact on physical and mental health leading to multiple consequences: increase of heart failure rates, cognitive and behavorial troubles... In addition to the clinical interviews, it is possible to measure the fatigue state using several cues : eye movement, EEG data, behavorial expression data (e.g. body movements). It is however nowadays feasible, thanks to recent advances in speech processing, to characterise fatigue states using only speech related cues. This technique have the main advantage that it does not require any specific or invasive apparatus and could thus be carried out in diverse enviroments, out of clinical context.
The project aims at following patients suffering from sleep apnea syndrome by using the data collected during interviews with a virtual doctor. This data will complement other data collection sources such as measurements from CPAP devices. The aim of this work is to focus on vocal cues characterising excessive daytime sleepiness in order to determine which are the vocal biomarkers of these troubles that could be integrated in the clinical measurements carried out during interviews with virtual doctors developped at SANPSY.
-------------
Work plan:
- Carry out Audio and Video recordings of patients on-site at the hospital in Bordeaux - Define the vocal parameters allowing to describe the troubles induced by excessive daytime sleepiness, in close collaboration with the SANPSY Lab. - Study these parameters and use them in a excessive daytime sleepiness automatic classification framework using sleepiness measurements proposed by the clinical staff as ground truth. - Implement the classification system in the virtual doctor framework developped at SANPSY and carry out clinical trials to validate the approach.
-------------
Required skills:
- Training (PhD or Master internship) in automatic speech processing, contributions in analysis/features for speech signals are expected - Machine learning and Artifical Intelligence : good knowledge of standard techniques (such as GMM/HMM/LDA) and knowledge/keen interest in deep learning methods - Good programming skills in python, C/C++ - Interest for clinical research / collaboration with clinical staff (flexible hours) - Good command of professionnal english
-------------
Salary : according to diploma and experience (examples : Master+3y = 2137? gross/month, PhD+3y = 2511 ? gross/month)
-------------
How to apply : Send your CV + cover letter + referees names + reports (interships,thesis,...) or publications by email to jean-luc.rouas@labri.fr
|
6-13 | (2018-06-25) Associate Linguist [French], Paris France
Job Title:
Associate Linguist [French]
Linguistic Field(s):
Phonetics, Phonology, Morphology, Semantics, Syntax, Lexicography, NLP
Location:
Paris 8, France
Contract:
Short term contract 1 year - renewable contract
Job description:
The role of the Associate Linguist is to annotate and review linguistic data in French. The Associate Linguist will also contribute to a number of other tasks to improve natural language processing. The tasks include:
- Providing phonetic/phonemic transcription of lexicon entries
- Analyzing acoustic data to evaluate speech synthesis
- Annotating and reviewing linguistic data
- Labeling text for disambiguation, expansion, and text normalization
- Annotating lexicon entries according to guidelines
- Evaluating current system outputs
- Deriving NLP data for new and on-going projects
- Be able to work independently with confidence and little oversight
Minimum Requirements:
- Native speaker of French and fluent in English
- Extensive knowledge of phonetic/phonemic transcriptions
- Familiarity with TTS tools and techniques
- Experience in annotation work
- Knowledge of phonetics, phonology, semantics, syntax, morphology or lexicography
- Excellent oral and written communication skills
- Attention to detail and good organizational skills
Desired Skills:
- Degree in Linguistics or Computational Linguistics or Speech processing
- Ability to quickly grasp technical concepts; learn in-house tools
- Keen interest in technology and computer-literate
- Listening Skills
- Fast and Accurate Keyboard Typing Skills
- Familiarity with Transcription Software
- Editing, Grammar Check and Proofing Skills
- Research Skills
Salary : 2730?
CV + motivation letter in English: maroussia.houimli@adeccooutsourcing.fr
Bien à vous,
Maroussia HOUIMLI
Responsable recrutement
Accueil en entreprise & Evénementiel et Marketing-Vente
T 06.24.61.08.43
E maroussia.houimli@adeccooutsourcing.fr
|
6-14 | (2018-07-08) 2-year post-doc in ASR for low-resource languages, Delft University, The Netherlands
Job opening: 2-year post-doc in ASR for low-resource languages
We are looking for a highly motived post-doctoral researcher in the area of automatic speech recognition (ASR) for low-resource languages, as part of the newly started ?Human-inspired automatic speech recognition? lab of Dr. Odette Scharenborg at the Technical University of Delft, The Netherlands.
This project concerns building ASR systems for low-resource languages using linguistic knowledge. The project aims to investigate different learning and training strategies (e.g., semi- vs. unsupervised learning, multi-task learning) and architectures of deep neural networks (DNNs) for the task of low-resource ASR. An important focus of the project is on the role of linguistic information and multi-linguality in building ASR systems for low-resource languages. A second important aspect of the project is opening the DNN ?Black box? by investigating the speech representations in the hidden layers of the DNNs using visualization techniques, and subsequently using this information to improve the ASR systems.
We are looking for a highly motivated individual with a strong background in: - Deep neural networks - Automatic speech recognition
Who preferably has knowledge of one or more of the following topics: - Visualization of DNNs - Different DNN architectures and training techniques - Semi-/unsupervised learning - Speech acoustics
Who has/is: - A PhD in Computer Science, Electrical Engineering, Computational Linguistics, Artificial Intelligence or a related field - A strong analytical mind - Excellent verbal and written communicative skills in English - At least 2 journal published journal papers in high-impact journals or conferences as first author - A strong team-worker
We offer a 2-year post-doctoral position in the Multimedia Computing Group, Department of Intelligent Systems, Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, the Netherlands.
For inquiries, please contact Dr. Odette Scharenborg (o.e.scharenborg@tudelft.nl). Applications should be send to o.e.scharenborg@tudelft.nl before August 13, 2018, and should include: - CV - Motivation letter - List of publications - Names and addresses of three referees.
The estimated starting date is October 1, 2018 or as soon as possible after that. Interviews will likely be held in the week of August 20-24, 2018.
Dr. Odette Scharenborg Associate Professor and Delft Technology Fellow Multimedia Computing Group, Faculty of Electrical Engineering, Mathematics, and Computer Science Delft University of Technology The Netherlands
|
6-15 | (2018-07-09) Two academic positions at NTNU,Norwegian University of Science and Technology, Trondheim, Norway
Professor/Associate Professor in Statistical Machine Learning for Speech Technology at NTNU, Norwegian University of Science and Technology, Trondheim, Norway
Faculty position targeting machine learning for pattern recognition, with particular emphasis on applications in speech and language technology at the Signal Processing Group, NTNU. Application deadline is Aug. 31, 2018. See https://www.jobbnorge.no/en/available-jobs/job/154954/professor-associate-professor-in-statistical-machine-learning-for-speech-technology-ie-138-2018 for further information.
Professor/Associate Professor in Statistical Machine Learning for Signal Processing at NTNU, Norwegian University of Science and Technology, Trondheim, Norway
Faculty position targeting machine learning for analysis, classification, prediction and data mining of (large amounts of) sensor data, typically measurements in time and/or space at the Signal Processing Group, NTNU. Application deadline is Aug. 31, 2018. See https://www.jobbnorge.no/en/available-jobs/job/154952/professor-associate-professor-in-statistical-machine-learning-for-signal-processing-ie-137-2018 for further information.
|
6-16 | (2018-07-19) CDD Ingénieur à l'IRISA, Rennes, Bretagne, France
L'équipe Expression de l'IRISA recrute un ingénieur pour un CDD de 24 mois sur le déploiement sur mobile d'un système de synthèse de la parole.
- Descriptif de l'offre en pièce jointe et ici : https://www-expression.irisa.fr/files/2018/07/fiche_de_poste.pdf
- Plus de détails sur l'équipe Expression : http://www-expression.irisa.fr/fr/
- Plus de détails sur l'IRISA : http://www.irisa.fr/
- Date limite de candidature : 10 septembre 2018
|
6-17 | (2018-07-20) Post Doc au Laboratoire national de métrologie et d'essais, Trappes (78), France
POST DOC 18 mois – Transparence et explicabilité de la comparaison de voix dans le domaine criminalistique
Localisation : Laboratoire national de métrologie et d'essais, Trappes (78)
REF : ML/VOX/DE
CONTEXTE :
Le projet ANR VoxCrim (2017-2021) propose d’objectiver scientifiquement les possibilités de mise en œuvre d’une comparaison de voix dans le domaine criminalistique. Deux objectifs principaux : a) mettre en place une méthodologie permettant d’assurer l’efficacité et la compétence des laboratoires réalisant des comparaisons de voix, b) établir des standards de mesures objectives. Il est nécessaire que les outils et méthodologies utilisés dans la comparaison de voix soient évalués, et que leur utilisation soit effectuée dans un cadre explicable et transparent. Les actions menées dans le projet permettront ainsi de faciliter le traitement d’une comparaison de voix dans les services de police et permettront de renforcer la recevabilité de la preuve auprès des tribunaux. Le laboratoire national de métrologie et d’essais (LNE) apporte au projet son expertise en métrologie, normalisation, accréditation et comparaison inter-laboratoire, dans le but de constituer une solution méthodologique pratique permettant de rendre le processus de comparaison de voix transparent et explicable.
MISSIONS :
Les missions confiées s’organisent en trois tâches : - Spécifications du protocole de validation des méthodes de comparaison de voix, plus spécifiquement dans le domaine de la criminalistique. En s’appuyant sur l’existant en termes de normes et méthodologies de référence, le (la) post-doctorant(e) identifiera les besoins et possibilités pour la mise en place d’un protocole de référence. - Le (la) post-doctorant(e) vérifiera l’adéquation du protocole identifié avec les métriques de comparaison de voix identifiées par les chercheurs des laboratoires d’informatique et de phonétique associés au projet. Il (elle) s’assurera également de la compatibilité du protocole avec les méthodes de travail des centres scientifiques de la Police et de la Gendarmerie, membres du projet. - Il (elle) collaborera à l’organisation d’une comparaison inter-laboratoire s’appuyant sur ce protocole.
Le (la) post-doctorant(e) bénéficiera du soutien de différentes équipes du LNE dans la menée de ses travaux (équipes évaluation des systèmes de traitement de l’information, mathématiques-statistiques, et métrologie), et sera en interaction régulière avec les autres laboratoires et centres scientifiques membres du projet. Des publications (et présentations, le cas échéant) en conférences et journaux internationaux sont attendues du (de la) post-doctorant(e).
Bibliographie : Bonastre, J. F., Kahn, J., Rossato, S., & Ajili, M. (2015). Forensic speaker recognition: Mirages and reality. In Speech Production and Perception: Speaker-Specific Behavior. hal-01473992.
DUREE :
18 mois. Début en janvier 2019.
PROFIL :
Vous êtes titulaire d’un doctorat en informatique ou en sciences du langage, avec une spécialisation en traitement automatique de la parole. Vous possédez des connaissances en méthodologie d’évaluation et en biométrique vocale.
Pour candidater, merci d’envoyer votre CV et lettre de motivation à l’adresse recrut@lne.fr en rappelant la référence : ML/VOX/DE
==================================================== Agnes Delaborde, PhD Ingénieur de recherche en évaluation IA & robotique (Research engineer in AI and robotics evaluation) Direction des essais – DE536 agnes.delaborde@lne.fr Tél. : +33 (0)1 30 69 11 50 - Mob. : +33 (0)6 26 72 69 80
Laboratoire national de métrologie et d'essais 29 avenue Roger Hennequin 78197 Trappes Cedex - lne.fr
|
6-18 | (2018-08-03) Doctoral thesis at IJLRA (Sorbonne Université) Paris France
Doctoral thesis
Navigation aid for the visually impaired: Virtual Reality acoustic simulations for interior navigation preparation
Laboratories IJLRA (Institut Jean le Rond d?Alembert, UMR 7190 CNRS ? Sorbonne Université) and IRCAM (Institut de Recherche et Coordination Acoustique/Musique, UMR 9912 STMS IRCAM ? CNRS ? Sorbonne Université)
Doctoral school École Doctorale Sciences Mécaniques, Acoustique, Électronique et Robotique (SMAER): ED 391
Discipline Acoustics (Virtual Reality, Audio, Interaction, Aide Handicap)
Co-supervision Brian KATZ (DR-CNRS, IJLRA) et Markus NOISTERNIG (CR, IRCAM)
Keywords Virtual reality, 3D audio, spatial sound, spatial cognition, room acoustics, visual impairments, navigation aid
Research context This thesis project is placed in the context of the ANR 2018-2021 project RASPUTIN (Room Acoustic Simulations for Perceptually Realistic Uses in Real-Time Immersive and Navigation Experiences). In the domains of sound synthesis and virtual reality (VR), much effort had been placed on the quality and realism of sound source renderings, from text-to-speech to musical instruments to engine noise for use in driving and flight simulators. The same degree of effort cannot be seen with regards to the spatial aspects of sound synthesis and virtual reality, particularly with respect to the acoustics of the surrounding environment. Room acoustic simulation algorithms have for decades been improving in their ability to predict acoustic measurement metrics like reverberation time from geometrical acoustic models, at a cost of higher and higher computational requirements. However, it is only recently that the perceptual quality of these simulations are being explored beyond their musical applications. In real-time systems, where sound source, listener, and room architecture can vary in unpredicted ways, investigation of the perceptual quality or realism has been hindered by necessary simplifications to algorithms. This project aims to improve real-time simulation quality towards perceptual realism.
The capability of a real-time acoustic simulation to provide meaningful information to a visually impaired user through a virtual reality exploration is the focus of the project. As a preparatory tool prior to visiting a public building or museum, the virtual exploration will improve user's knowledge of the space and navigation confidence during their on-site visit, as compared to traditional methods such as tactile maps.
The thesis work entails participating in the creation and evaluation of a training system application for visually impaired individuals. Tasks involve the development of an experimental prototype in collaboration with project partners with a simplified user interface for the construction of virtual environments to explore. Working in conjunction with a selected user group panel who will remain engaged in the project for the duration, several test cases of interest will be identified for integration into the prototype and subsequent evaluations. The prototype will be developed by the thesis student in collaboration with Novelab (audio gaming) and IRCAM/STMS-CNRS (developers of the audio rendering engine). Design and evaluation will be carried out in collaboration with the Centre de Psychiatrie et Neurosciences and StreetLab/Institut de la Vision. The ability to communicate in French would be beneficial, but is not mandatory at the start of the project.
Evaluations will involve different experimental protocols in order to assess the accuracy of the mental representation of the learned environments. From the point of view of the metrics relation preservation, participants will have to carry out experimental spatial memory tests as well as onsite navigation tasks.
Candidate profile: We are looking for dynamic, creative, and motivated candidates with scientific curiosity, strong problem solving skills, the ability to work both independently and in a team environment, and the desire to push their knowledge limits and areas of confidence to new domains. The candidate should have a Master in Computer Science, Acoustics, Architectural Acoustics, Multimodal Interfaces, or Audio Signal Processing. A strong interest in spatial audio, room acoustics, and working with the visually impaired is necessary. It is not expected that a candidate will have already all the skills necessary for this multidisciplinary subject, so a willingness and ability to rapidly step into new domains, including spatial cognition and psychoacoustics will be appreciated.
Domaine Réalité virtuelle, Audio, Interaction, Aide Handicap
Dates Preferred starting date from 1-Nov-2018 to 20-Dec-2019, and no later than March-2019.
Application Interested candidates should send a CV, transcript of Master?s degree courses, a cover letter (limit 2 pages) detailing their motivations for pursuing a PhD in general and specifically the project described above, and contact information for 2 references that the selection committee can contact. Incomplete candidatures will not be processed.
Application deadline Complete candidature files should be submitted to brian.katz@sorbonne-universite.fr and markus.noisternig@ircam.fr before 1-Oct-2018.
|
6-19 | (2018-08-13) Post-docs at Idiap, Martigny, Switzerland
Dear Colleagues,
We currently have openings for two or three post-doctoral researchers in speech and language processing at Idiap Research Institute:
http://www.idiap.ch/education-and-jobs/job-10251
All the positions involve the theory and application of deep learning. Whilst a significant research element is envisaged, there are also applications involving collaborations with local enterprises.
Idiap is located in French speaking Switzerland, although the lab hosts many nationalities, and functions in English. All positions offer quite generous salaries. More information is available on the institute's web site, http://www.idiap.ch/en
Several similar positions at PhD, post-doc and senior level are also available at the institute in general.
http://www.idiap.ch/en/join-us/job-opportunities
Sincerely, -- Phil Garner http://www.idiap.ch/~pgarner
|
6-20 | (2018-08-17) 1 PhD position in affective computing at the Grenoble Alps University, France
1 PhD position in affective computing at the Grenoble Alps University ATOS France and the Grenoble Informatics Laboratory (LIG) invite applications for a fully funded PhD position on 'Weakly-supervised learning of human affective behaviors from multimodal interactions with a chatbot'. The PhD will be co-supervised by Jean-Phillippe Vigne (ATOS) and Béatrice Bouchot (ATOS), Pr. Laurent Besacier (LIG) and Dr. Fabien Ringeval (LIG).
Thesis description ================== The thesis targets three main objectives: 1) the development of a weakly-supervised learning methodology for the semi-automatic annotation of affective information from speech and text produced by humans while interacting with a chatbot 2) the development of a module that performs a robust fusion of inputs? representations (speech + text) in order to infer attributes of affect in varying noisy conditions 3) an evaluation of the system?s robustness in different contexts of interaction with the chat-bot.
Recent advances in deep learning have shown promising results in many applications of affective computing [Picard-95], where ones of the most dominant tasks consist in quantifying attributes of human emotion, such as arousal, valence, or dominance [Russel-80], time-continuously from signals recorded by sensors [Wöllmer-08]. Long Short-Term Memory Recurrent Neural Networks (LSTM-RNN) [Gers-99] have successfully been employed to model long-range contextual dependencies between attributes of affect and speech data [Eyben-10, Eyben-12, Ringeval-15], and convolutional neural networks (CNNs) have shown promising results for learning useful information from the raw signals when combined with LSTM-RNN in the so-called ?end-to-end? framework [Trigeorgis-16]. Recently, semi-supervised [Schmitt-16, Ghosh-16] and unsupervised [Cummins-18] methods of representation learning have shown the interest of exploiting resources from other domains in order to deal with the issue of data scarcity, which is of paramount importance for methods based on deep learning, as they need as many examples as possible to generalise well on expressions of affect produced ?in-the-wild? [Ringeval-18].
In this thesis, weakly-supervised methods based on deep learning will be exploited to perform semi-automatic annotation of human affective behaviour from speech and text ? either typed on a keyboard, or automatically retrieved from speech by an ASR. Context-aware novelty detection [Marki-15] based on deep LSTM auto-encoders will be used to detect novel affective content, and semi-supervised learning methods [Zhang-18] will be employed to enrich the model while following a curriculum learning [Lotfian-18]. Data exploited to build and evaluate the system will rely on the data collected during the project but also on existing publicly available datasets of emotion, including people with various culture, language, age, education, but also featuring different environments and contexts of interaction. Data automatically retrieved from social platforms like YouTube channels will be considered for automatically enriching the model in a ?virtuous circle? fashion.
The envisioned starting date is December 2018.
Requirements ============ We are looking for one candidate with a strong focus on deep learning for affective computing with the following profile: + Master?s degree with background in Machine Learning, Speech Processing, Affective Computing + Excellent programming skills (Python, Java, C/C++), knowledge of Keras/TensorFlow/Torch would be ideal + Ability to work independently and be self-motivated + Excellent communication skills in English
Applying========To apply, please email your application to: fabien.ringeval@imag.fr, laurent.besacier@imag.fr, jean-philippe.vigne@atos.net and beatrice.bouchot@atos.net. The application should consist of a single pdf file including: + a curriculum vitae showing academic records with tracks related to the themes of the thesis + transcript of marks according to M1-M2 profile or last 3 years of engineering school + statement letter expressing your interest in the position and your profile relevance + contact and recommendation letter of at least one university referent Incomplete applications will not be processed. Potential candidates will be invited for an interview with the supervisors.
Conditions of employment ======================== You will be hired on a fixed-term contract (3 years contract ? CIFRE) at ATOS, a global leader in digital transformation.
Working at Grenoble (ATOS/LIG) ================================== You will be integrated in two teams with academic and industrial profiles: the GETALP team of the LIG, recognised for its research activities in the fields of speech and language processing, and the team Cognitive Intelligence from ATOS, who is specialised in Artificial Intelligence (AI) for the development of chatbots.
ATOS is a leader in digital services with pro forma annual revenue of circa ? 12 billion and circa 100,000 employees in 73 countries, serving a global client base. ATOS R&D team has a very active innovation spirit backed by a culture of Intellectual Property. Together these have led to numerous disruptive developments, including more than 1,500 patents. ATOS Grenoble (1000 collaborators) is focusing on AI, working with a variety of clients to implement solutions where they create value. ATOS leadership in Cloud technology, Cybersecurity and High-performance computing, along with our partnerships with major AI companies (e.g., Google), help us provide clients with the resources, expertise and support they need.
The LIG is one of the largest laboratories in Computer Science in France. It is structured as a Joint Research Center (Unité Mixte de Recherche) founded by the CNRS, the Grenoble Institute of Technology (Grenoble INP), the INRIA Grenoble Rhône-Alpes, and the Grenoble Alps University (UGA), which has recently been ranked as France?s number one university in eleven disciplines, including Computer Science & Engineering, in the latest Shanghai Academic Subject Rankings of World Universities 2017. The LIG hosts 17 research teams and three teams providing administrative and technical supports, which represent an overall of 450 collaborators including 205 permanent researchers, 143 PhD students, and 35 persons in supporting teams as identified in 2016.
The city of Grenoble is located on a plateau at the foot of the French Alps and is advertised to be the ?Capital of the Alps? due to its immediate proximity to the mountains. The IMAG building hosting the LIG is located on a landscaped campus of 175 hectares, which straddles Saint-Martin-d?Hères and Gières, and welcome around 40,000 students and researchers working in various research institutions. Thanks to this campus, UGA has been ranked as the eighth most beautiful universities in Europe by the Times Higher Education magazine in 2018. Overall, Grenoble as a city is the largest research center in France after Paris with 22,800 researchers.
References ==========
[Cummins-18] Nicholas Cummins, Shahin Amiriparian, Gerhard Hagerer, Anton Batliner, Stefan Steidl, and Björn Schuller, An image-based deep spectrum feature representation for the recognition of emotional speech, in Proceedings of ACM MM 2017, pp. 478?484, October 2017, ACM. [Eyben-10] Florian Eyben, Martin Wöllmer, Alex Graves, Björn Schuller, Ellen Douglas-Cowie and Roddy Cowie, On-line emotion recognition in a 3-D activation-valence-time continuum using acoustic and linguistic cues, Journal on Multimodal User Interfaces 3(1-2):7?19, March 2010, Springer Nature. [Eyben-12] Florian Eyben, Martin Wöllmer, and Björn Schuller, A multi-task approach to continuous five-dimensional affect sensing in natural speech, ACM Transactions on Interactive Intelligent Systems (TiiS) - Special Issue on Affective Interaction in Natural Environments 2(1):6, March 2012, ACM. [Gers-99] Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins, Learning to forget: Continual prediction with LSTM, in Proceedings of ICANN 1999, pp. 850?855, ENNS. [Ghosh-16] Sayan Ghosh, Eugene Laksana, Louis-Philippe Morency and Stefan Scherer, Representation learning for speech emotion recognition, in Proceedings of Interspeech 2016, pp. 3603?3607, September 2016, ISCA. [Lotfian-18] Reza Lotfian and Carlos Busso, Curriculum learning for speech emotion recognition from crowdsourced labels, arXiv:1805.10339, May 2018. [Marki-15] Erik Sayan Ghosh, Eugene Laksana, Louis-Philippe Morency and Stefan Scherer, Representation learning for speech emotion recognition, in Proceedings of Interspeech 2016, pp. 3603?3607, September 2016, ISCA. [Picard-95] Rosalind W. Picard, Affective Computing, MIT Press. [Ringeval-15] Fabien Ringeval, Florian Eyben, Eleni Kroupi, Anil Yuce, Jean-Philippe Thiran, Touradj Ebrahimi, Denis Lalanne, and Björn Schuller, Prediction of asynchronous dimensional emotion ratings from audiovisual and physiological data, Pattern Recognition Letters, 66:25?30, November 2015, Elsevier. [Ringeval-18] Fabien Ringeval, Björn Schuller, Michel Valstar, Roddy Cowie, Heysem Kaya, Maximilian Schmitt, Shahin Amiriparian, Nicholas Cummins, Denis Lalanne, Adrien Michaud, Elvan Ciftçi, Hüseyin Güleç, Albert Ali Salah, and Maja Pantic, AVEC 2018 Workshop and challenge: Bipolar disorder and cross-cultural affect recognition, in Proceedings of AVEC?18, ACM MM, October 2018, ACM. [Russel-80] James A. Russel, A circumplex model of affect, Journal of personality and social psychology, 39(6):1161?1178, December 1980, APA. [Schimtt-16] Maximilian Schmitt, Fabien Ringeval, and Björn Schuller, At the border of acoustics and linguistics: Bag-of-Audio-Words for the recognition of emotions in speech. In Proceedings Interspeech 2016, pp. 495?499, San Fransisco (CA), USA, September 2016, ISCA. [Trigeorgis-16] George Trigeorgis, Fabien Ringeval, Raymond Brueckner, Erik Marchi, Mihalis Nicolaou, Björn Schuller and Stefanos Zafeiriou, Adieu features? End-to-end speech emotion recognition using a deep convolutional recurrent network, in Proceedings ICASSP 2016, pp. 5200?5204, Shanghai, China, April 2016, IEEE. [Wöllmer-08] Martin Wöllmer, Florian Eyben, Stephan Reiter, Björn Schuller, Cate Cox, Ellen Douglas-Cowie, and Roddy Cowie, Abandoning emotion classes-towards continuous emotion recognition with modelling of long-range dependencies, in Proceedings of Interspeech 2008, Brisbane, Australia, pp. 597?600, ISCA. [Zhang-18] Zixing Zhang, Jin Han, Jun Deng, Xinzhou Xu, Fabien Ringeval, and Björn Schuller, Leveraging unlabelled data for emotion recognition with enhanced collaborative semi-supervised learning, IEEE Access, 6, April 2018, IEEE.
|
6-21 | (2018-08-20) PhD Position to work with laryngeal high-speed videos of pathological speakers at the MUV, Vienna, Austria.
Subject: PhD Position to work with laryngeal high-speed videos of pathological speakers at the MUV, Vienna, Austria.
Job description:
The Medical University of Vienna (MUV), Austria, seeks to fill a position of a PhD-student within the project ?Objective differentiation of dysphonic voice quality types?. The candidate must hold a master?s degree, preferably in (one of) the fields of sound engineering, acoustical engineering, audio signal processing, or similar. The work will be conducted at the Division of Phoniatrics-Logopedics within the Department of Otorhinolaryngology of the MUV.
The workgroup hosting the project is interested in the assessment of voice parameters relevant to the medical diagnosis and clinical care of voice disorders. A focus is given to functional assessment of voice, especially to the objective description of voice quality. The levels of description include kinematics of voice production, voice acoustics, and auditory perception of voice. Clinical studies are conducted with a laryngeal high-speed camera that records vocal fold vibration at 4000 frames per second. Microphone signals of the voice are recorded in parallel. Vibratory patterns of the vocal folds are analysed visually and computationally via modelling. Trajectories of vocal fold edges, spatial arrangements thereof, and glottal area waveforms are analysed. Regarding acoustics, analysis of audio recordings involves the implementation, testing, and training of specialized synthesizers for pathological voices. On the level of auditory perception, listening experiments are conducted, especially experiments involving discrimination tasks.
Mandatory skills of the candidate are MATLAB programming, speech signal processing, psychoacoustics, good knowledge of English, good communication skills, and excellent analytical thinking. Optional skills of the candidate are knowledge of German, experience in a health care profession, image and video processing, Python, PureData, object-oriented programming, software engineering, version control (Subversion, Git, or similar), SQL, and XML.
The project duration is 4-5 years. The Austrian Science Fund (FWF) budgets for doctoral candidates a gross salary of 2.112,40 Euro per month. Application documents can be submitted to philipp.aichinger@meduniwien.ac.at by October 31st, 2018. Interviews are planned for November 2018.The project is planned to start in December 2018.
Information regarding the beautiful city of Vienna can be found at https://www.meduniwien.ac.at/web/en/international-affairs/living-in-vienna/.
|
6-22 | (2018-08-27) POST DOC 18 mois – Transparence et explicabilité de la comparaison de voix dans le domaine criminalistique, Laboratoire national de métrologie et d'essais, Trappes, France
POST DOC 18 mois – Transparence et explicabilité de la comparaison de voix dans le domaine criminalistique
Localisation : Laboratoire national de métrologie et d'essais, Trappes (78)
REF : ML/VOX/DE
CONTEXTE :
Le projet ANR VoxCrim (2017-2021) propose d’objectiver scientifiquement les possibilités de mise en œuvre d’une comparaison de voix dans le domaine criminalistique. Deux objectifs principaux : a) mettre en place une méthodologie permettant d’assurer l’efficacité et la compétence des laboratoires réalisant des comparaisons de voix, b) établir des standards de mesures objectives.
Il est nécessaire que les outils et méthodologies utilisés dans la comparaison de voix soient évalués, et que leur utilisation soit effectuée dans un cadre explicable et transparent. Les actions menées dans le projet permettront ainsi de faciliter le traitement d’une comparaison de voix dans les services de police et permettront de renforcer la recevabilité de la preuve auprès des tribunaux.
Le laboratoire national de métrologie et d’essais (LNE) apporte au projet son expertise en métrologie, normalisation, accréditation et comparaison inter-laboratoire, dans le but de constituer une solution méthodologique pratique permettant de rendre le processus de comparaison de voix transparent et explicable.
MISSIONS :
Les missions confiées s’organisent en trois tâches :
- Spécifications du protocole de validation des méthodes de comparaison de voix, plus spécifiquement dans le domaine de la criminalistique. En s’appuyant sur l’existant en termes de normes et méthodologies de référence, le (la) post-doctorant(e) identifiera les besoins et possibilités pour la mise en place d’un protocole de référence.
- Le (la) post-doctorant(e) vérifiera l’adéquation du protocole identifié avec les métriques de comparaison de voix identifiées par les chercheurs des laboratoires d’informatique et de phonétique associés au projet. Il (elle) s’assurera également de la compatibilité du protocole avec les méthodes de travail des centres scientifiques de la Police et de la Gendarmerie, membres du projet.
- Il (elle) collaborera à l’organisation d’une comparaison inter-laboratoire s’appuyant sur ce protocole.
Le (la) post-doctorant(e) bénéficiera du soutien de différentes équipes du LNE dans la menée de ses travaux (équipes évaluation des systèmes de traitement de l’information, mathématiques-statistiques, et métrologie), et sera en interaction régulière avec les autres laboratoires et centres scientifiques membres du projet.
Des publications (et présentations, le cas échéant) en conférences et journaux internationaux sont attendues du (de la) post-doctorant(e).
Bibliographie : Bonastre, J. F., Kahn, J., Rossato, S., & Ajili, M. (2015). Forensic speaker recognition: Mirages and reality. In Speech Production and Perception: Speaker-Specific Behavior. hal-01473992.
DUREE :
18 mois. Début en janvier 2019.
PROFIL :
Vous êtes titulaire d’un doctorat en informatique ou en sciences du langage, avec une spécialisation en traitement automatique de la parole.
Vous possédez des connaissances en méthodologie d’évaluation et en biométrique vocale.
Pour candidater, merci d’envoyer votre CV et lettre de motivation à l’adresse recrut@lne.fr en rappelant la référence : ML/VOX/DE
====================================================
Agnes Delaborde, PhD
Ingénieur de recherche en évaluation IA & robotique (Research engineer in AI and robotics evaluation)
Direction des essais – DE536
agnes.delaborde@lne.fr
Tél. : +33 (0)1 30 69 11 50 - Mob. : +33 (0)6 26 72 69 80
Laboratoire national de métrologie et d'essais
29 avenue Roger Hennequin 78197 Trappes Cedex - lne.fr
|
6-23 | (2018-08-31) Post Doctoral Position (12 months), Natural Language Processing, INRIA-Loria, Nancy, France
Post Doctoral Position (12 months), Natural Language Processing: ?Online hate speech against migrants?
Keywords: hate speech, migrants, social media, natural language processing.
Supervisors : Irina Illina and Dominique Fohr. The applicant will also collaborate with CREM Laboratory
Start: end of 2018 ? begin of 2019
Location: INRIA-Loria, Nancy, France
Duration: 1 year
To apply: send the following documents to illina@loria.fr and dominique.fohr@loria.fr as soon as possible and no later than September 25th, 2018:
-
CV
-
motivation letter
-
PhD thesis if already completed, or a description of the work in progress otherwise
-
a copy of your publications
-
The ideal applicant should have:
-
A PhD in NLP
-
A solid background in statistical machine learning.
-
Strong publications.
-
Solid programming skills to conduct experiments.
-
Good level in English.
Context:
According to the 2017 International Migration Report, the number of international migrants worldwide has continued to grow rapidly in recent years, reaching 258 million in 2017, up from 220 million in 2010 and 173 million in 2000. In 2017, 64 per cent of all international migrants worldwide ? equal to 165 million international migrants ? lived in high-income countries; 78 million of them were residing in Europe. A key reason for the difficulty of EU leaders to take a decisive and coherent approach to the refugee crisis has been the high levels of public anxiety about immigration and asylum across Europe. Indeed, across the EU, attitudes towards asylum and immigration have hardened in recent years because of: (i) the increase in the number and visibility of migrants in recent years, (ii) the economic crisis and austerity policies enacted since the 2008 Global Financial Crisis, (iii) the role of the mass media in influencing public and elite political attitudes towards asylum and migration. Refugees and migrants tend to be framed negatively as a problem, potentially nourishing.
The BRICkS ? Building Respect on the Internet by Combating Hate Speech ? EU project has revealed a significant increase of the use of hate speech towards immigrants and minorities, which are often blamed to be the cause of current economic and social problems. The participatory web and the social media seem to accelerate this tendency, accentuated by the online rapid spread of fake news which often corroborate online violence towards migrants.
More and more audio/video/text appear on Internet each day. About 300 hours of multimedia are uploaded per minute. In these multimedia sources, manual content retrieval is difficult or impossible. The classical approach for spoken content retrieval from multimedia documents is an automatic text retrieval. Automatic text classification is one of the widely used technologies for the above purposes. In text classification, text documents are usually represented in some so-called vector space and then assigned to predefined classes through supervised machine learning. Each document is represented as a numerical vector, which is computed from the words of the document. How to numerically represent the terms in an appropriate way is a basic problem in text classification tasks and directly affects the classification accuracy. We will use these methodologies to perform one of the important tasks of text classification: automatic hate speech detection.
Our methodology in the hate speech classification will be related on the recent approaches for text classification with neural networks and word embeddings. In this context, fully connected feed forward networks (Iyyer et al., 2015; Nam et al., 2014), Convolutional Neural Networks (CNN) (Kim, 2014; Johnson and Zhang, 2015) and also Recurrent/Recursive Neural Networks (RNN) (Dong et al., 2014) have been applied.
-
Objectives:
Within this context and problematic, the post-doc position aims to analyze hate speech towards migrants in social media and more particularly on Twitter. This post-doc position aims at proposing concepts and software components (Hate Speech Domain Specific Analysis and related software tools in connection with migrants in social media) to bridge the gap between conceptual requirements and multi-source information from social media. Automatic hate speech detection software will be experimented in the modeling of various hate speech phenomenon and assess their domain relevance.
The language of the analysed messages will be primarily French, although links with other languages (including messages written in English) may appear throughout the analysis.
-
-
References
Dai, A. M. and Le, Q. V. (2015). ?Semi-supervised sequence Learning?. In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R., editors, Advances in Neural Information Processing Systems 28, pages 3061-3069. Curran Associates, Inc
Delgado R., Stefancic J. (2014), ?Hate speech in cyberspace?, Wake Forest Law Review, 49.
Dong, L., Wei, F., Tan, C., Tang, D., Zhou, M., and Xu, K. (2014). ?Adaptive recursive neural network for target-dependent twitter sentiment classification?. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL, Baltimore, MD, USA, Volume 2: pages 49-54.
Johnson, R. and Zhang, T. (2015). ?Effective use of word order for text categorization with convolutional neural networks?. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 103-112.
Iyyer, M., Manjunatha, V., Boyd-Graber, J., and Daumé, H. (2015). ?Deep unordered composition rivals syntactic methods for text classification?. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics, volume 1, pages 1681-1691.
Kim, Y. (2014). ?Convolutional neural networks for sentence classification?. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1746-1751.
King R. D., Sutton G. M. (2013). High times for hate crimes: Explaining the temporal clustering of hate-motivated offending. Criminology, 51 (4), 871?894.
Mikolov, T., Yih, W.-t., and Zweig, G. (2013a). ?Linguistic regularities in continuous space word representations?. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746-751.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). ?Distributed representations of words and phrases and their Compositionality?. In Advances in Neural Information Processing Systems, 26, pages 3111-3119. Curran Associates, Inc.
Nam, J., Kim, J., Loza Menc__a, E., Gurevych, I., and Furnkranz, J. (2014). ?Large-scale multi-label text classification ? revisiting neural networks?. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD-14), Part 2, volume 8725, pages 437-452.
Schieb C, Preuss M (2016), Governing Hate Speech by Means of Counter Speech on Facebook, 66th ICA Annual Conference, Fukuoka, Japan.
|
6-24 | (2018-09-02) CDD IRISA, Rennes, France
L'équipe Expression de l'IRISA ouvre un CDD de 24 mois sur le déploiement mobile d'un système de synthèse de la parole.
Mots-clés : synthèse de la parole, intelligence artificielle, machine learning, agents conversationnels.
Détails :
- offre d'emploi : pièce jointe et ici : https://www-expression.irisa.fr/files/2018/09/fiche_de_poste.pdf
- Équipe Expression : http://www-expression.irisa.fr/fr/
- IRISA : http://www.irisa.fr/
- Bac + 5 ou Bac + 2 avec compétence Android / iOS
- Date limite de candidature : 5 octobre 2018
|
6-25 | (2018-09-03) PhD position and Post-doc position: Privacy-respecting dialog systems,Saarland University,Germany
PhD position and Post-doc position: Privacy-respecting dialog systems ============================================= (Computational Linguistics, Computer Science or similar)
Conversational interfaces based on deep learning are becoming more and more ubiquitous. However, the massive amounts of stored speech and text data that is needed for training state-of-the-art models raises serious privacy concerns for its users. Each spoken message may potentially reveal information about the user's personality, may contain critical information (credit card numbers, passwords, etc.), and may convey sensitive information (ethnicity, age, health status, etc.). Voice recordings may even be malevolently used to build synthesized voiced to impersonate users.
The Spoken Language Systems group at Saarland University is seeking new ways to provide dialog technology that is 'private by design' by means such as e.g. privacy-preserving machine learning. To this end, we are anticipating the availability of a PhD position and a Post-Doc position starting at the beginning of 2019.
Ideal candidates for either position would have:
1. A good understanding of not just NLP, but of dialog phenomena in particular. Here, an understanding of how privacy-relevant information may arise as a result of dialog behavior (rather than as part of a single utterance) is desirable.
2. Excellent knowledge of machine learning, experience with weakly-supervised methods a plus.
3. Knowledge of and experience with scientific evaluation methodologies.
4. Excellent programming skills, experience with RESTful APIs a plus.
5. Experience with architecting large, heterogeneous, modular and distributed systems.
Salaries: The PhD position will be 75% of full time on the German E13 scale (TV-L). The Post-Doc position will be 100% of the full time on the German E13 scale (TV-L). The appointments will be for three years with possible extensions subject to follow-up funding.
About the department: The department of Language Science and Technology is one of the leading departments in the speech and language area in Europe. The flagship project at the moment is the CRC on Information Density and Linguistic Encoding. Furthermore, the department is involved in the cluster of excellence Multimodal Computing and Interaction. It also runs a significant number of European and nationally funded projects. In total it has seven faculty and around 50 postdoctoral researchers and PhD students.
How to apply:
Please send us: * a letter of motivation, * your CV, * your transcripts, * a list of publications, * and the names and contact information of at least two references,
as a single PDF or a link to a PDF if the file size is more than 3 MB.
Please apply by October 10th, 2018.
Contact: Applications and any further inquiries regarding the project should be directed to:
* Thomas.Kleinbauer@lsv.uni-saarland.de * Dietrich.Klakow@lsv.uni-saarland.de
|
6-26 | (2018-09-08) Enseignant vacataire Université de Franche-Comté, Besançon, France
Le département Sciences du Langage & FLE de l'Université de Franche-Comté (site de Besançon, SLHS) cherche un.e enseignant.e vacataire pour le TD de « Phonétique et multimodalité de la parole », en 2è année de licence Sciences du langage, au semestre 1, 12h par TD (2 voire 3), sur le créneau du vendredi 8-9h, 10-11h et/ou 13-14h.
Informations :
? Description : Ce cours s?intéresse à l?émergence de la parole des points de vue ontogénétique et phylogénétique. Il explore les modifications anatomiques et physiologiques qui rendent la parole possible. Le cours s?intéresse aussi aux différentes modalités (vocale, verbale, gestuelle) que les humains utilisent pour communiquer au quotidien.
? Objectifs pédagogique : Connaître l?importance de la parole dans la communication humaine, et les autres modalités qui la complètent - Se familiariser avec les questions que posent les sciences humaines à propos de l?origine du langage. - S?initier d?un point de vue phonétique à l?unité et à la diversité des langues - Se familiariser avec les mécanismes de la phonation et approfondir les connaissances articulatoires du système phonétique français - Renforcer les compétences en transcription phonétique et s?initier à l?analyse acoustique de la parole.
Le/la candidat.e devra : - soit être étudiant.e âgé.e de moins de vingt-huit ans au 1er septembre de l'année universitaire et inscrit.e.s en vue de la préparation d'un diplôme du troisième cycle, ou :- justifier d'une activité professionnelle principale d'une durée de 900 heures sur une période de 12 mois (décret du 16 septembre 2004). Contact : Sophie Mariani-Rousset (smariani@univ-fcomte.fr)
|
6-27 | (2018-09-13) Senior Research and Development Engineer (m/f), ELDA, Paris
The European Language resources Distribution Agency (ELDA), a company specialized in Human Language Technologies within an international context, acting as the distribution agency of the European Language Resources Association (ELRA), is currently seeking to fill an immediate vacancy for a Senior Research and Development Engineer position.
Senior Research and Development Engineer (m/f)
Under the supervision of the CEO, the responsibilities of the Senior R&D Engineer include designing, developing, documenting, deploying and maintaining tools, software components or web applications for language resource production and management, as well as carrying out quality control and assessment of language resources. He/she will be in charge of managing the current language resources production workflows and co-ordinating ELDA?s participation in R&D projects while being also hands-on whenever required by the language resource production and management team. He/she will liaise with external partners at all phases of the projects (submission to calls for proposals, building and management of project teams) within the framework of international, publicly- or privately-funded research and development projects.
This yields excellent opportunities for creative and motivated candidates wishing to participate actively to the Language Engineering field.
Profile: ? PhD in Computer Science, Electrical Engineering, Natural Language Processing, or equivalent ? Experience in Natural Language Processing (speech processing, data mining, machine translation, etc.) ? Experience in managing a multi-disciplinary team ? Proficiency in classic shell scripting in a Linux environment (POSIX tools, Bash, awk) ? Proficiency in Python ? Hands-on experience in Django ? Good knowledge of Javascript and CSS ? Knowledge of a distributed version control system (Git, Mercurial) ? Knowledge of SQL and of RDBMS (PostgreSQL preferred) ? Knowledge of XML and of standard APIs (DOM, SAX) ? Good knowledge of basic Computer Science algorithms ? Familiarity with open source and free software ? Knowledge of a statically typed functional programming language (OCaml preferred) is a strong plus ? Proficiency in French and English, with strong writing and documentation skills in both languages ? Dynamic and communicative, flexible to work on different tasks in parallel ? Ability to work independently and as part of a multidisciplinary team ? Citizenship (or residency papers) of a European Union country
Salary: Commensurate with qualifications and experience.
Applicants should email a cover letter addressing the points listed above together with a curriculum vitae to:
ELDA 9, rue des Cordelières 75013 Paris FRANCE Fax : 01 43 13 33 30 Mail : job@elda.org
ELDA is acting as the distribution agency of the European Language Resources Association (ELRA). ELRA was established in February 1995, with the support of the European Commission, to promote the development and exploitation of Language Resources (LRs). Language Resources include all data necessary for language engineering, such as monolingual and multilingual lexica, text corpora, speech databases and terminology. The role of this non-profit membership Association is to promote the production of LRs, to collect and to validate them and, foremost, make them available to users. The association also gathers information on market needs and trends.
For further information about ELDA/ELRA, visit: http://www.elda.org
|
6-28 | (2018-09-22) Doctoral student (Speech Technology, Cognitive Science), Tampere University of Technology, Finland
Doctoral student (Speech Technology, Cognitive Science), Tampere University of Technology, Finland
We are inviting applications for the position of Doctoral Student in the areas of speech technology and cognitive science at Tampere University of Technology (TUT), Laboratory of Signal Processing. The successful candidate will become a member of a newly formed research group named Speech and Cognition, led by Assistant Professor Okko Räsänen. In addition to research work, the candidate will commit to the pursuit of a doctoral degree in science (technology) at TUT. The job will consist of the following duties: • Research work on a mutually agreed doctoral research topic • Completion of mandatory studies for a D.Sc. (tech.) degree • Participation to the Doctoral Program of Computing and Electrical Engineering at TUT • Assisting tasks in teaching and in other activities of the research group The broad scope of the position is related to the study of language acquisition and processing by humans and artificial computational systems. Potential topics include: 1. development of computational models of unsupervised and multimodal language learning and speech perception 2. development of algorithms and tools for analyzing acoustic and linguistic patterns in large-scale naturalistic audio recordings. More precise goals of the thesis project will be planned together with the candidate. The work in the position will be closely integrated to several ongoing Academy of Finland research projects and their international collaboration networks. The current contract will be made for a fixed term period until 31.8.2021 with a view for extension (with an initial probationary period of 6 months). Target completion time for a doctoral degree is 4 years. The commencement date will be as soon as possible, as mutually agreed. The salary will be based on both the job demands and the employee's personal performance level in accordance with the University Salary System. According to the criteria applied to teaching and research staff, the position of a Doctoral Student is placed on job demands levels 2–4. A typical starting salary for a Doctoral Student at the beginning of their studies is 2330–2450 eur. Exceptional Master’s students of TUT, who are close to graduation, can be also considered for the position. In this case, the candidate is first employed as a Research Assistant to carry out a master’s thesis project (6 months) on the topic and, upon a successful thesis project, with the possibility to continue to doctoral studies. Salary during master’s thesis project will correspond to job demands level 1. Requirements: The successful candidate must hold a master’s degree or to be close to graduation in a discipline related to the job, for example Computer Science, Signal Processing, Mathematics, Artificial Intelligence or Machine Learning. Candidates from Linguistics, Psychology, Neurosciences, or other field related to language or developmental research will also be considered, given that the candidate has a sufficiently strong technical background. Basic programming skills and experience with MATLAB, Python, or comparable programming languages are required. Good written and spoken English skills, capability for team work, and open mindset towards cross-disciplinary research are also essential. Skills in statistical analysis and previous research experience are counted as an advantage. The successful candidate must either already be a PhD student at Tampere University of Technology or apply for post-graduate studies at the university. More information on the admission process and requirements: http://www.tut.fi/en/admissions/doctoral-studies-p... For more information, please contact: Assistant Professor Okko Räsänen, email: okko.rasanen@tut.fi How to apply: Applications must be submitted by TUT online application form at https://tut.rekrytointi.com/paikat/?o=A_A&jid=28 . Closing date for applications is 30 September 2018 (24.00 EEST / 21.00 UTC). The most promising candidates will be interviewed in person or in a teleconference. The interviews will take place during the last week of application period and the first week of October, and therefore it is advisable to submit an application as soon as possible. The following documents should be attached to the application in .pdf format: • motivation letter • CV, including contact details of possible referees • copy of Master’s degree diploma (if applicable) and a transcript of completed studies with course grades • copies of certificates related to the applicant's language proficiency About the Speech and Cognition Group: The research of Speech and Cognition group covers speech communication from both language technology and cognitive science points of view. Central research questions are related to how humans learn to understand and produce speech in interaction with their environment, how speech perception and production operate and how they are related to other cognitive capabilities such as memory and learning, and how similar language and cognitive skills could be implemented in man-made computational systems. The primary research method of the group is computational modeling of these phenomena, combining machine learning and signal processing to spoken language and other sensory data available to language learning children. The group also works on various technological applications related to, e.g., spoken language health technology and automatic analysis of large-scale speech recordings. Research of the group is conducted in collaboration with researchers across areas such as speech technology, linguistics, psychology, acoustics, neuroscience, and clinical medicine. About the research environment: Finland is among the most stable, free and safe countries in the world, based on prominent ratings by various agencies. It is also ranked as one of the top countries as far as social progress is concerned. Tampere is counted among the major academic hubs in the Nordic countries and offers a dynamic living environment. Tampere region is one of the most rapidly growing urban areas in Finland and home to a vibrant knowledge-intensive entrepreneurial community. The city is an industrial powerhouse that enjoys a rich cultural scene and a reputation as a centre of Finland’s information society. Read more about Finland and Tampere: • https://www.visitfinland.com/about-finland/ • https://finland.fi/ • https://tem.fi/documents/1410877/2888440/SIS_MIN_E... • https://visittampere.fi/en/
The new Tampere University and higher education community begin their operations on 1 January 2019. Tampere University of Technology, the University of Tampere and Tampere University of Applied Sciences are building a unique environment for multidisciplinary, inspirational and high-impact research and education and a hub of expertise in technology, health and society. Read more: https://www.tampere3.fi/en
|
6-29 | (2018-09-17) Associate Linguist [Français]
Intitulé du poste :
Associate Linguist [French]
Champs linguistiques :
Phonétique, Phonologie, Morphologie, Sémantique, Syntaxe, Lexicographie, TAL
Lieu :
Paris, France
Description du poste :
En tant qu’Associate Linguist, vous annoterez et réviserez des données linguistiques en français. L’Associate Linguist contribuera également à un certain nombre de tâches en traitement automatique des langues, dont :
- Transcription phonétique/phonémique d’entrées lexicales
- Analyse de données acoustiques pour évaluer la synthèse vocale
- Annotation et révision de données linguistiques
- Labellisation de textes, désambiguisation, expansion, and normalisation des données
- Annotation d’entrées lexicales en respectant les codes de référence
- Evaluation des outputs système
- Dérivation de données en TAL
- Capacité à travailler de manière indépendante avec précision
Compétences requises:
- Locuteur de langue maternelle française, parfaite maîtrise de l’anglais
- Connaissance en transcriptions phonétiques et phonologiques
- Familiarité avec les techniques et outils de synthèse de la parole et de reconnaissance vocale
- Expérience en annotation
- Connaissances en phonétique, phonologie, sémantique, syntaxe, morphologie et lexicographie
- Excellentes compétences en communication orale et écrite
- Attention aux détails et compétences organisationnelles
Compétences désirées :
- Diplôme en linguistique théorique et computationnelle et TAL
- Capacité à saisir rapidement les concepts techniques et les outils conçus en interne
- Vif intérêt pour la technologie et compétences en informatique
- Compétences en écoute de données orales
- Compétences en saisie de clavier rapide et précise
- Familiarité avec les logiciels de transcription
- Compétences en édition, correction grammaticale et orthographique
- Compétences en recherche
CV + lettre de motivation en Anglais : maroussia.houimli@adeccooutsourcing.fr
2730E brut/mensuel + 50% Pass Navigo + Mutuelle
Maroussia HOUIMLI
Responsable recrutement
Accueil en entreprise & Evénementiel et Marketing-Vente
T 06.24.61.08.43
E maroussia.houimli@adeccooutsourcing.fr
21 Boulevard Voltaire, 75011 - Paris
www.adecco.fr/outsourcing/
|
6-30 | (2018-09-18) 3-year Postdoctoral Researcher in Multilingual Speech Processing, IRISA, Rennes, France (updated)
3-year Postdoctoral Researcher in Multilingual Speech Processing
CONTEXT
The Expression research team focuses on expressiveness in human-centered data. In this context, the team has a strong activity in the field of speech processing, especially text-to-speech (TTS). This activity is denoted by regular publications in top international conferences and journals, exposing contributions in topics like machine learning (including deep learning), natural language processing, and speech processing. Team Expression takes part in multiple collaborative projects.Among those,the current position will take part in a large European H2020 project focusing on the social integration of migrants in Europe.
Team’s website: https://www-expression.irisa.fr/
PROFILE Main tasks:
1. Design multilingual TTS models (acoustic models, grapheme-to-phoneme, prosody, text normalization…)
2. Take part in porting the team’s TTS system for embedded environments
3. Develop spoken language skill assessment methods
Secondary tasks: 1. Collect speech data
2. Define use cases with the project partners
Environment: The successful candidate will integrate a team of other researchers and engineers working on the same topics.
Required qualification: PhD in computer science or signal processing
Skills: ● Statistical machine learning and deep learning
● Speech processing and/or natural language processing
µ● Strong object-oriented programming skills
µ● Android and/or iOS programming are a strong plus
CONTRACT Duration: 36 months, full time
Salary: competitive, depending on the experience.
Starting date: latest mid June 2019
APPLICATION & CONTACTS Send a cover letter, a resume, and references by email to:
● Arnaud Delhay,arnaud.delhay@irisa.fr ;
● Gwénolé Lecorvé, gwenole.lecorve@irisa.fr ;
● Damien Lolive, damien.lolive@irisa.fr. Application will be processed on a daily basis.
|
6-31 | (2018-09-20) Inria is seeking a Technical Project Manager for a new European (H2020 ICT) collaborative project COMPRISE, INRIA, Nancy, France
Inria is seeking a Technical Project Manager for a new European (H2020 ICT) collaborative project called COMPRISE.
COMPRISE is a 3-year Research and Innovation Action (RIA) aiming at new cost-effective, multilingual, privacy-driven voice interaction technology. This will be achieved through research advances in privacy-driven machine/deep learning, personalized training, automatic data labeling, and tighter integration of speech and dialog processing with machine translation. The technology will be based on existing software toolkits (Kaldi speech-to-text, Platon dialog processing, Tilde text-to-speech), as well as new software resulting from these research efforts. The consortium includes academic and industrial partners in France (Inria, Netfective Technology), Germany (Ascora, Saarland University), Latvia (Tilde), and Spain (Rooter).
The successful candidate will be part of the Multispeech team at Inria Nancy (France). As the Technical Project Manager of H2020 COMPRISE, he/she will be responsible for animating the consortium in daily collaboration with the project lead. This includes orchestrating scientific and technical collaborations as well as reporting, disseminating, and communicating the results. He/she will also lead Inria?s software development and demonstration tasks.
Besides the management of COMPRISE, the successful candidate will devote half of his/her time to other activities relevant to Inria. Depending on his/her expertise and wishes, these may include: management of R&D projects in other fields of computer science, involvement in software and technology development and demonstration tasks, building of industry relationships, participation in the setup of academic-industry collaborations, support with drafting and proofreading new project proposals, etc.
Ideal profile: - MSc or PhD in speech and language processing, machine learning, or a related field - at least 5 years' experience after MSc/PhD, ideally in the private sector - excellent software engineering, project management, and communication skills
Application deadline: October 12, 2018
Starting date: December 1, 2018 or January 1, 2019 Duration: 3 years (renewable) Location: Nancy, France Salary: from 2,300 to 3,700 EUR net/month, according to experience
For more details and to apply: https://jobs.inria.fr/public/classic/en/offres/2018-01033
|
6-32 | (2018-09-20) PhD grant at Universidad Politécnica de Madrid, Spain
PhD grant at Universidad Politécnica de Madrid
BIOMARKERS FOR THE DIAGNOSIS AND EVALUATION OF PARKINSON'S DISEASE BASED ON SPEECH AND OCULOGRAPHIC MULTIMODAL STUDIES Laboratories: Bioengineering and Optoelectronics Research Group http://www.byo.ics.upm.es Doctoral school: ETSI Telecomunicación, Universidad Politécnica de Madrid Discipline: Neuroscience, machine learning, digital signal processing Supervision: Juan Ignacio Godino Llorente Keywords: Parkinson’s disease, speech, oculographic signals, multimodal evaluation, early detection Research context: This thesis project is placed in the context of the BIOMARKERS FOR THE DIAGNOSIS AND EVALUATION OF PARKINSON'S DISEASE BASED ON SPEECH AND OCULOGRAPHIC MULTIMODAL STUDIES (DPI2017-83405-R), financed by the Spanish Ministry of Economy and Competitiveness. Summary of the project: Parkinson's disease is a chronic degenerative disorder affecting the dopamine production centers in the basal ganglia and which is mainly manifested with dysfunctions in motor systems. The disease affects 2% of the population over 60 years but its prevalence is likely to increase due to the aging trend of the world population. In addition to affecting the quality of life of patients and their environment, the disease carries a loss of productivity and high costs for health systems, so early diagnosis and treatment are vital to alleviate these negative effects. However, to date, there are not early and noninvasive markers of the disease. The literature has identified that voice and oculographic signals are affected even in pre-symptomatic stages, but this has not been exploited to design robust diagnosis and screening systems. Therefore this project aims at employing voice and oculographic signals as biomarkers for the design of automatic detection and screening systems based on digital signal processing techniques. To do this a phonetic-articulatory analysis of speech together with an analysis of eye movements (saccades, fixations, smooth pursuit...) analysis will be performed. The project objectives are relevant to the challenge 'health, demographic change and wellbeing' aiming at alleviating the cost associated with the disease on the European healthcare system. Candidate profile: We are looking for dynamic, creative, and motivated candidates with scientific curiosity, strong problem solving skills, the ability to work both independently and in a team environment, and the desire to push their knowledge limits and areas of confidence to new domains. The candidate should have a Master in Bioengineering, Computer Science, Acoustics, Electronic Engineering, Multimodal Interfaces, or Signal Processing, and experience in signal processing, machine learning, and information retrieval from complex data. A strong interest in bioengineering and multi-disciplinary applications is necessary. It is not expected that the candidate will have already all the skills necessary, but a willingness and ability to rapidly step into new domains. Summary of conditions: Full time work (37,5h/week) Contract duration: 4 years. Life Insurance. Estimated Incorporation date: Beginning of 2019. Specific conditions of the call Application: Interested candidates should send a CV, transcript of Master’s degree courses, a cover letter (limit 2 pages) detailing their motivations for pursuing a PhD in general and specifically the project described above, and contact information for 2 references that the selection committee can contact. Application deadline: Complete candidature files should be submitted to ignacio.godino@upm.es before October 10th, 2018. See also http://www.byo.ics.upm.es/BYO/noticias/phd-position
|
6-33 | (2018-08-20) PhD student opportunity at LTCI, Telecom ParisTech, Paris, France
A PhD student opportunity is now available at LTCI, Telecom ParisTech, Paris, France (https://www.telecom-paristech.fr/eng, https://ltci.telecom- paristech.fr/about-the-lab/?lang=en)
Framework: ********** Groups are a fascinating interdisciplinary phenomenon. They can be defined as bounded and structured entities that emerge from the purposive, interdependent actions of individuals. One of the current open challenges on automated groups? analysis is to provide computational models of higher level concepts called emergent states, that is states emerging as results of affective, behavioral and cognitive interactions among the members of a group. Cohesion is one of these states. It is a dynamic process that is reflected in the tendency for a group to stick together and remain united in the pursuit of its instrumental objectives and/or for the satisfaction of members?
affective needs. Cohesion is considered as a highly valued group property serving crucial roles for group effectiveness and performance. Scholars proposed theoretical models of cohesion having
from one to five dimensions.
Among these dimensions, the task and social ones were the most investigated. The task dimension concerns the extent to which group members are united to achieve the group?s goals and objectives; the social dimension refers to the social relationships within the group (e.g. the extent to which group members like each other). The thesis will focus on the development of a computational model of cohesion among humans, able to integrate its task and social dimensions and also accounting for their relationship and their development over time. This work will be conducted in the framework of the ANR JCJC French national project GRACE (Groups? Analysis for automated Cohesion
Estimation).
Tasks: ****** - State-of-the-art on cohesion to identify which are its most suitable and frequent multimodal behavioral descriptors. State-of-the-art will span several research fields, including sociology, psychology, and computer science - Computation of multimodal behavioral descriptors of cohesion - Designing and performing experiments to collect a multimodal data set on cohesion - Designing, implementing, and evaluating a computational model of cohesion
Profile: ******** The ideal candidate should have a strong academic background in one or more of the following fields: Computer Science, AI, Machine learning, Human- Computer Interaction, Information Technology, Affective Computing, Social Signal Processing, or closely related fields. In addition to a passion for science and programming, you should be open to extend your thinking to the issues linked to Human-Computer Interaction. Moreover, the ideal candidate should have: - Interest in multidisciplinary research at the interface between computer science and sociology/psychology - Excellent academic track record - Good command of English (written and spoken) - Strong programming skills (C++/Python) - Very good communication skills, commitment, independent working style as well as initiative and team spirit
Offer: ****** Starting date: between winter 2018 and spring 2019. This is flexible and can be negotiated with the supervisor within the above-mentioned
time frame.
Application deadline: the evaluation of the PhD candidates starts immediately and it will continue until the position is filled. To apply please send by email to giovanna.varni@telecom-paristech.fr a single pdf file including: - A cover letter stating your research interests and how they could be related to the research topic the thesis focuses on. - A detailed CV - Transcripts of records of your MSc - List of at least 2 referees - Recommendation letters You are encouraged to contact Prof. Giovanna Varni for more information. Please quote ?PhD position? in the email subject for both asking information and application.
|
6-34 | (2018-10-05) POST DOC 18 mois, Laboratoire national de métrologie et d'essais, Trappes (78), France
POST DOC 18 mois – Transparence et explicabilité de la comparaison de voix dans le domaine criminalistique
Localisation : Laboratoire national de métrologie et d'essais, Trappes (78)
REF : ML/VOX/DE
CONTEXTE :
Le projet ANR VoxCrim (2017-2021) propose d’objectiver scientifiquement les possibilités de mise en œuvre d’une comparaison de voix dans le domaine criminalistique. Deux objectifs principaux : a) mettre en place une méthodologie permettant d’assurer l’efficacité et la compétence des laboratoires réalisant des comparaisons de voix, b) établir des standards de mesures objectives.
Il est nécessaire que les outils et méthodologies utilisés dans la comparaison de voix soient évalués, et que leur utilisation soit effectuée dans un cadre explicable et transparent. Les actions menées dans le projet permettront ainsi de faciliter le traitement d’une comparaison de voix dans les services de police et permettront de renforcer la recevabilité de la preuve auprès des tribunaux.
Le laboratoire national de métrologie et d’essais (LNE) apporte au projet son expertise en métrologie, normalisation, accréditation et comparaison inter-laboratoire, dans le but de constituer une solution méthodologique pratique permettant de rendre le processus de comparaison de voix transparent et explicable.
MISSIONS :
Les missions confiées s’organisent en trois tâches :
- Spécifications du protocole de validation des méthodes de comparaison de voix, plus spécifiquement dans le domaine de la criminalistique. En s’appuyant sur l’existant en termes de normes et méthodologies de référence, le (la) post-doctorant(e) identifiera les besoins et possibilités pour la mise en place d’un protocole de référence.
- Le (la) post-doctorant(e) vérifiera l’adéquation du protocole identifié avec les métriques de comparaison de voix identifiées par les chercheurs des laboratoires d’informatique et de phonétique associés au projet. Il (elle) s’assurera également de la compatibilité du protocole avec les méthodes de travail des centres scientifiques de la Police et de la Gendarmerie, membres du projet.
- Il (elle) collaborera à l’organisation d’une comparaison inter-laboratoire s’appuyant sur ce protocole.
Le (la) post-doctorant(e) bénéficiera du soutien de différentes équipes du LNE dans la menée de ses travaux (équipes évaluation des systèmes de traitement de l’information, mathématiques-statistiques, et métrologie), et sera en interaction régulière avec les autres laboratoires et centres scientifiques membres du projet.
Des publications (et présentations, le cas échéant) en conférences et journaux internationaux sont attendues du (de la) post-doctorant(e).
Bibliographie : Bonastre, J. F., Kahn, J., Rossato, S., & Ajili, M. (2015). Forensic speaker recognition: Mirages and reality. In Speech Production and Perception: Speaker-Specific Behavior. hal-01473992.
DUREE :
18 mois. Début en janvier 2019.
PROFIL :
Vous êtes titulaire d’un doctorat en informatique ou en sciences du langage, avec une spécialisation en traitement automatique de la parole.
Vous possédez des connaissances en méthodologie d’évaluation et en biométrique vocale.
Pour candidater, merci d’envoyer votre CV et lettre de motivation à l’adresse recrut@lne.fr en rappelant la référence : ML/VOX/DE
|
6-35 | (2018-10-09) 2 permanent positions at the European Language resources Distribution Agency (ELDA), Paris, France
The European Language resources Distribution Agency (ELDA), a company specialised in Human Language Technologies within an international context is currently seeking to fill immediate vacancies for 2 permanent positions:
-
Web Developer position (m/f): Under the supervision of the technical department manager, the responsibilities of the Web Developer consist in designing and developing web applications and software tools for linguistic data management. Some of these software developments are carried out within the framework of European research and development projects and are published as free software. Depending on the profile, the Web Developer could also participate in the maintenance and upgrading of the current linguistic data processing toolchains, while being hands-on whenever required by the language resource production and management team.
-
Research and Development Engineer (m/f): Under the supervision of the CEO, the responsibilities of the R&D Engineer include designing, developing, documenting, deploying and maintaining tools, software components or applications for language resource production and management. He/she will be in charge of managing the current language resources production workflows and co-ordinating ELDA?s participation in R&D projects while being also hands-on whenever required by the language resource production and management team. He/she will liaise with external partners at all phases of the projects (submission to calls for proposals, building and management of project teams) within the framework of international, publicly- or privately-funded research and development projects.
Both positions based in Paris.
Please check the profile details for each open position here: http://www.elra.info/en/opportunities/
Contact: job@elda.org
|
6-36 | (2018-10-08) Stage chez Airbus DS Elancourt, France
Une offre de stage chez Airbus DS Elancourt sur la reconnaissance automatique de la parole :
|
6-37 | (2018-10-09) Stage Master Recherche,L'intelligibilité chez des patients atteints de troubles de la parole, Avignon, France
Stage Master Recherche – 6 mois Contact : Corinne Fredouille (corinne.fredouille@univ-avignon.fr) Sujet : Approches à base de Deep Learning appliquées à l'évaluation de l'intelligibilité chez des patients atteints de troubles de la parole. Le terme « troubles de la parole » fait référence à l'ensemble des déficiences affectant la production de la parole chez un être humain. Le bégaiement est un exemple de troubles de la parole. Le LIA travaille depuis une dizaine d'années sur les troubles de la parole, et plus particulièrement sur la manière dont les outils de traitements automatiques peuvent aider les cliniciens et les phonéticiens dans leur analyse acoustico-phonétique du signal de parole et/ou perceptive des productions de parole en vue de mieux comprendre les dégradations inhérentes aux troubles de la parole. Les travaux les plus récents portent notamment sur l'étude d'un système de détection automatique de déviances dans des productions de parole dégradée [Laaridh et al., 2015] ou d'un système automatique de prédiction du degré d'intelligibilité basé sur des i-vecteurs [Laaridh et al., 2017 ; Laaridh et al., 2018]. Dans un premier temps, ces approches ont été appliquées sur des productions de parole dégradée produites par des patients atteints de lésions neurologiques localisées dans le système nerveux central ou périphérique. On parle alors de trouble moteur de la parole d'origine neurologique, désigné sous le terme de dysarthrie. La dysarthrie peut être l'un des symptômes de différentes maladies telles que la maladie de Parkinson, la Sclérose Latérale Amyotrophique (SLA), les Accidents Vasculaires Cérébraux, etc. Ces différentes maladies se distinguent notamment par la localisation des lésions neurologiques et, par conséquent, par le type de troubles moteur (faiblesse musculaire, mouvements involontaires, imprécision des mouvements …) et le type de dégradations de la parole qu'elles peuvent engendrer (distorsion des voyelles, imprécision des consonnes, altération du débit, hypernasalité, …). Ces approches ont été, dans un deuxième temps, évaluées sur des productions de parole dégradées issues de patients atteints de cancers des voies aérodigestives supérieures (présence de tumeurs) et/ou suite à des traitements thérapeutiques inhérents (exérèse, radiothérapie, etc). En fonction de la maladie et de son évolution, les troubles moteur du patient pourront être évalués de manière perceptive (« à l'oreille ») par le clinicien sur une échelle de sévérité allant d'une dysarthrie légère à sévère. Sur une échelle similaire, le clinicien pourra également juger du degré d'intelligibilité de la parole d'un patient ie sa capacité à transmettre un message oral à un auditeur. Malgré son caractère très subjectif, l'évaluation perceptive des troubles de la parole chez les patients reste la seule approche à l'heure d'aujourd'hui utilisée en pratique clinique. Au vu des progrès observés dans le traitement automatique de la parole ces dix dernières années, des solutions technologiques sont âprement attendues dans ce domaine pour aider les cliniciens dans leur bilan clinique. Néanmoins, même si de nombreux travaux scientifiques portent sur l'utilisation d'approches automatiques pour une évaluation objective des troubles de la parole, un besoin de mieux comprendre les dégradations dans le signal de parole est nécessaire. Le LIA est engagé dans un projet financé par l'Agence Nationale de la Recherche (ANR) avec 3 autres partenaires sur la période 2019-2022 sur ce thème. L'un des objectifs de ce projet est de mieux comprendre quelles unités linguistiques sont majoritairement impliquées dans les processus d'intelligibilité du locuteur. Ainsi, une altération observée ou attendue de ces unités, conséquence d'une pathologie particulière, pourrait permettre de quantifier de manière objective la perte d'intelligibilité chez le patient. D'un point de vue pratique, il s'agira au travers des approches de Deep Learning et d'une comparaison parole normale/parole dégradée associée à des évaluations perceptives de l'intelligibilité d'aborder cette question. Le sujet du stage proposé ici s'inscrit dans ce cadre. Il aura pour objectif la mise en place du cadre expérimental nécessaire à la recherche des unités linguistiques impliquées dans ces processus d'intelligibilité. Il s'appuiera sur un état de l'art sur les approches de Deep Learning, qui devront être vues non pas comme des boites noires mais comme un moyen d'extraire de l'information utile et de comprendre les processus étudiés : ici l'intelligibilité du locuteur. A l'issue de ce stage, un financement de thèse (projet ANR) pourra être proposé au candidat. Références bibliographiques [Laaridh et al., 2015] I. Laaridh, C. Fredouille, C. Meunier, « Automatic Detection of Phone-Based Anomalies in Dysarthric Speech », ACM Transactions on Accessible Computing (TACCESS), (Volume : 6 Issue 3), June 2015. [Laaridh et al., 2017] I. Laaridh, W. Ben-Kheder, C. Fredouille, C. Meunier, « Automatic Prediction of Speech Evaluation Metrics for Dysarthric Speech », Interspeech'2017, Stockholm, Sweden. August 2017. [Laaridh et al., 2018] I. Laaridh, C. Fredouille, A. Ghio, M. Lalain, V. Woisard, « Automatic evaluation of speech intelligibility based on i-vectors in the context of Head and Neck Cancers », Interspeech'2018, Hyderabad, India. September 2018.
|
6-38 | (2018-10-09) Stage Master Recherche: L' évaluation des troubles de la parole dans la maladie de Parkinson, Avignon, France
Stage Master Recherche – 6 mois Contact : Corinne Fredouille (corinne.fredouille@univ-avignon.fr) Sujet : Traitements automatiques appliqués à l'évaluation des troubles de la parole dans la maladie de Parkinson Le terme « troubles de la parole » fait référence à l'ensemble des déficiences affectant la production de la parole chez un être humain. Le bégaiement est un exemple de troubles de la parole. Le LIA travaille depuis une dizaine d'années sur les troubles de la parole, et plus particulièrement sur la manière dont les outils de traitements automatiques peuvent aider les cliniciens et les phonéticiens dans leur analyse acoustico-phonétique du signal de parole et/ou perceptive des productions de parole en vue de mieux comprendre les dégradations inhérentes aux troubles de la parole. Les travaux les plus récents portent notamment sur l'étude d'un système de détection automatique de déviances dans des productions de parole dégradée [Laaridh et al., 2015] ou d'un système automatique de prédiction du degré d'intelligibilité basé sur des i-vecteurs [Laaridh et al., 2017 ; Laaridh et al., 2018]. Dans un premier temps, ces approches ont été appliquées sur des productions de parole dégradée produites par des patients atteints de lésions neurologiques localisées dans le système nerveux central ou périphérique. On parle alors de trouble moteur de la parole d'origine neurologique, désigné sous le terme de dysarthrie. La dysarthrie peut être l'un des symptômes de différentes maladies telles que la maladie de Parkinson, la Sclérose Latérale Amyotrophique (SLA), les Accidents Vasculaires Cérébraux, etc. Ces différentes maladies se distinguent notamment par la localisation des lésions neurologiques et, par conséquent, par le type de troubles moteur (faiblesse musculaire, mouvements involontaires, imprécision des mouvements …) et le type de dégradations de la parole qu'elles peuvent engendrer (distorsion des voyelles, imprécision des consonnes, altération du débit, hypernasalité, …). Ces approches ont été, dans un deuxième temps, évaluées sur des productions de parole dégradées issues de patients atteints de cancers des voies aérodigestives supérieures (présence de tumeurs) et/ou suite à des traitements thérapeutiques inhérents (exérèse, radiothérapie, etc). En fonction de la maladie et de son évolution, les troubles moteur du patient pourront être évalués perceptivement par le clinicien sur une échelle de sévérité allant d'une dysarthrie légère à sévère. Sur une échelle similaire, le clinicien pourra juger du degré d'intelligibilité de la parole d'un patient ie sa capacité à transmettre un message oral à un auditeur. La revue de la littérature sur l'application des outils de traitement automatique de la parole dans le cadre de troubles de la parole montre que la communauté scientifique souffre d'un manque cruel de données cliniques disponibles. En effet, les systèmes automatiques nécessitent pour une majorité d'entre eux une quantité importante de données pour l'apprentissage des modèles sur lesquels ils reposent. La mise à disposition de grands corpus de parole normale (des centaines d'heures d'enregistrements accompagnées d'annotations manuelles) a d'ailleurs permis les améliorations de ces dernières années des systèmes de reconnaissance de la parole et leur utilisation dans le cadre d'applications grand public. Dans le contexte clinique, la constitution de corpus pose un certain nombre de problèmes : accès aux patients pour leur enregistrement au travers de collaborations avec des cliniciens de centres hospitaliers, demande d'autorisation de commissions hospitalières pour la mise en place d'un programme de recherche impliquant des patients, mise en place de protocoles particuliers prenant en compte les contraintes cliniques, collecte des données audio mais également de données cliniques nécessaires (informations personnelles du patient, pathologie, stade de progression, prise en charge thérapeutique, évaluation perceptive menée par les cliniciens, …) pour l'analyse des résultats. Ces difficultés expliquent le nombre très restreint de corpus actuellement disponibles. Le LIA dispose, grâce à ces collaborations avec d'autres laboratoires de recherche et des établissements hospitaliers de quelques corpus, comptabilisant un peu plus d'une centaine de locuteurs, enregistrés principalement sur une tâche de lecture d'un texte et pour quelques un sur de la parole spontanée. Néanmoins, cela reste insuffisant pour une application efficiente des outils de traitement de la parole. Le Laboratoire Parole et Langage (LPL) d'Aix-en-Provence enregistre depuis de très nombreuses années des patients atteints de dysarthrie et de dysphonie (altération de la voix). Il a ainsi accumulé des enregistrements de plus de 2500 patients, dont 600 d'entre eux sont atteints de la maladie de Parkinson. Ces données audio sont accompagnées dans leur grande majorité des données cliniques du patient. Le LPL a fait un énorme travail depuis une dizaine d'années d'homogénéisation et de structuration de ces données au travers d'une base de données conséquente permettant le stockage et la pérennisation de ces données. L'objectif du LIA est à présent d'exploiter cette masse de données en se focalisant dans un premier temps sur les quelques 600 patients atteints de la maladie de Parkinson. Il s'agira dans le cadre de ce stage d'établir très rapidement une cartographie de ces patients, décrivant leur âge, genre, nombre d'enregistrements, quantité de parole disponibles, type de tâches, évaluations perceptives disponibles… Cette première phase très préliminaire permettra au candidat de se familiariser avec le contexte particulier des données cliniques. La deuxième phase du stage reposera sur une revue de la littérature faisant référence au Challenge COMPARE Interspeech 2015 [Schuller et al., 2015], dédié à la prédiction de l’état neurologique de patients atteints de la maladie de Parkinson sur la base de l’échelle UPDRS (Unified Parkinson's Disease Rating Scale). Cette revue permettra de faire état des différentes approches proposées dans ce contexte particulier pour extraire de l'information pertinente pour la caractérisation de la dysarthrie chez des sujets atteints de la maladie de Parkinson et pour la prédiction de la sévérité de leur dysarthrie. Il s'agira pour le candidat d'évaluer le comportement de quelques unes de ces approches sur le corpus de patients à notre disposition voire d'en proposer de nouvelles le cas échéant. Une analyse par type de tâche proposé dans le protocole d'enregistrement pourra également faire partie du travail (lecture d'un texte, lecture de mots, répétition de syllabes, ...). A l'issue de ce stage, un financement de thèse pourra être proposé au candidat. Références bibliographiques [Laaridh et al., 2015] I. Laaridh, C. Fredouille, C. Meunier, « Automatic Detection of Phone-Based Anomalies in Dysarthric Speech », ACM Transactions on Accessible Computing (TACCESS), (Volume : 6 Issue 3), June 2015. [Laaridh et al., 2017] I. Laaridh, W. Ben-Kheder, C. Fredouille, C. Meunier, « Automatic Prediction of Speech Evaluation Metrics for Dysarthric Speech », Interspeech'2017, Stockholm, Sweden. August 2017. [Laaridh et al., 2018] I. Laaridh, C. Fredouille, A. Ghio, M. Lalain, V. Woisard, « Automatic evaluation of speech intelligibility based on i-vectors in the context of Head and Neck Cancers », Interspeech'2018, Hyderabad, India. September 2018. [Schuller et al., 2015] B. Schuller, S. Steidl, A. Batliner, S. Hantke, F. Hönig, J. R. OrozcoArroyave, E. Nöth, Y. Zhang, et F.Weninger, 2015. The interspeech 2015 computational paralinguistics challenge : Nativeness, Parkinson’s & eating condition. Proceedings of Interspeech’15, Dresden, Germany.
|
6-39 | (2018-10-12) Maitre de conf'érence, Centrale Supelec Metz France
CentraleSupélec Metz recrute un MCF section 27 ou 61: http://www.loria.fr/wp-content/uploads/2018/09/Profil-MCF-contractuel_DataScienceMathematics_03092018.pdf
Sur le plan de la recherche, 4 équipes sont ciblées dont la nôtre sur le traitement de la parole (https://team.inria.fr/multispeech/).
Nous invitons les candidats potentiels à nous contacter.
Date limite de candidature: 5 novembre.
|
6-40 | (2018-10-17) Tenure-Track Assistant Professor: Computational Linguistics, Rochester Institute of Technology, USA
Job: Tenure-Track Assistant Professor: Computational Linguistics, Rochester Institute of Technology
The Department of English at the Rochester Institute of Technology invites applications for a full-time, 9 month tenure-track Assistant Professor of Computational Linguistics/Linguistics, beginning in August 2019. Candidates are expected to have an earned doctorate in Linguistics, Computer Science, or a related field by the time of appointment. The committee will consider candidates who will finish their doctorate degree in the first year.
Successful candidates should demonstrate computational expertise, strong research talent, and initiative in grant writing. Candidates should also have a plan for effective teaching and student mentoring at the introductory and advanced undergraduate and graduate levels. We invite applicants to explore our curriculum with courses ranging from linguistic foundations and courses in core sub-disciplines of linguistics to natural language processing and speech processing.
We are especially interested in qualified candidates who will exhibit the ability to contribute in meaningful ways to the college's continuing commitment to cultural diversity, pluralism, and individual differences.
We are seeking an individual who has the ability and interest in contributing to a community committed to student centeredness; professional development and scholarship; integrity and ethics; respect, diversity and pluralism; innovation and flexibility; and teamwork and collaboration. Select to view links to RIT's http://www.rit.edu/academicaffairs/policiesmanual/p040, http://www.rit.edu/academicaffairs/policiesmanual/p030, and https://www.rit.edu/academicaffairs/policiesmanual/p050
Required Minimum Qualifications
- An earned doctorate (PhD. or equivalent) in Linguistics, Computer Science, or a related field at time of appointment or within the first year; - Demonstrated research excellence; - Plan for developing a long-term research program including grant attainment; - Potential for effective teaching and mentoring of undergraduate and graduate students; - Ability to contribute in meaningful ways to the college?s continuing commitment to cultural diversity, pluralism, and individual differences.
Apply online at http://careers.rit.edu/faculty Keyword Search: 4119BR
Please submit: your curriculum vitae, cover letter addressing the listed qualifications and upload the following attachments: - Research statement (not to exceed 2 pages) - Teaching statement (not to exceed 1 page) - Two sample publications or research products (URL acceptable) - The names, email addresses, and phone numbers for three references - Contribution to Diversity Statement
You can contact the search committee chair Dr. Cecilia O. Alm with questions on the position at coagla@rit.edu.
Review of applications will begin on November 27, 2018 and will continue until a suitable candidate is found.
The direct link to this posting can be found here: https://apptrkr.com/1315291
Additional Details
RIT does not discriminate. RIT is an equal opportunity employer that promotes and values diversity, pluralism, and inclusion. For more information or inquiries, please visit RIT/TitleIX or the U.S. Department of Education at ED.Gov
|
6-41 | (2018-10-19) post-doctoral researcher , University of Twente, The Netherlands
In the context of the ZonMW project Smart Sports Exercises, the University of Twente is looking for a post-doctoral researcher to develop new multimodal, interactive, digitally enhanced training exercises on an instrumented floor with actuators (LED video screen) and sensors that offer minimized on-body motion sensing. The successful candidate will be embedded in the Human Media Interaction group, and will work together with a colleague already employed at the Biomedical Signals and Systems group who develops new models and methods for tracking and analyzing behavioral data of volleyball players.
As a successful applicant, you will be working in a highly interdisciplinary research project. The aim of the project is to enhance volleyball training and trainer education through three main lines of innovation: (1) development of new interactive concepts for digitally supported training exercises, using game like interaction on an instrumented LED video floor, (2) innovation of data science for automatic analysis of behavioural data in sports exercises to provide the necessary input, and (3) innovation in conceptual thinking about sport training and PE that combines technological and non-technological elements, incorporating pedagogy and training didactics. We target a range of users, from elite players to youth and recreational teams, and including players, trainers, and teacher educators.
The project is a collaboration between a consortium of research institutes, sports organisations, and companies. The University of Twente leads the project, and is responsible for the data science and interaction technology in the project. Other partners are the Windesheim University of Applied Sciences (CALO), InnoSportLab Sport & Beweeg, Sportservice Veenendaal, and LedGo BV.
In this particular open position, you will work on developing interactive training exercise systems and on evaluating user experience, perception and performance in explorative and experimental studies. This will be done iteratively, in close interaction with end users such as volleyball trainers and players.
Your profile
You are passionate to work one of the above topics, and have clearly relevant background for that. You hold a PhD degree in computer science, biomedical engineering, HCI, game design or other relevant domain. You are capable of designing and realizing interaction technology systems. An additional background in user centered research and design, games, or embodied interaction is considered a pre.
You are an independent and self-directed researcher and developer, but also a team player able to work in a diverse and multidisciplinary consortium. You are an excellent researcher as well as someone who can contribute to the realization of actual interactive technology systems.
More information on this position
How to apply
Apply to this position by submitting at the following link (closing date: October 31st):
https://www.utwente.nl/en/organization/careers/vacancy/!/462306/
Your application should include the following documents:
- a cover letter (in English or Dutch) which explains your interest in the position and your qualifications.
- a curriculum vitae which also includes the name and e-mail address/telephone number for (preferably) two or more references;
- a copy of your PhD-thesis or, if it is not yet available, an outline and summary of your thesis and one of your scientific papers.
Our offer
A challenging opportunity to perform post-doctoral research in the context of a highly ambitious 2-year ZonMw-funded project. The University of Twente offers a stimulating work environment in an area of applied, forefront research and offers strong and inspiring collaboration possibilities with the medical field. You will have a 0.8-1.0 fte position for the duration of ~2 years and can participate in all employee benefits the UT offers. The gross monthly salary starts with ? 3111,- in the first year and increases over time. Additionally, the University of Twente provides excellent facilities for professional and personal development, a holiday allowance of 8%, and an end of year bonus of 8.3%.
The organization
The University of Twente. We stand for life sciences and technology. High tech and human touch. Education and research that matter. New technology which leads change, innovation and progress in society. The University of Twente is the only campus university of the Netherlands; divided over five faculties we provide more than fifty educational programmes. We have a strong focus on personal development and talented researchers are given scope for carrying out groundbreaking research.
|
6-42 | (2018-10-16) Postdoctoral ASR, Radbout University, Nijmegen, The Netherlands
dbout University, Nijmegen, The NetherlandsApplication deadline: 28 October 2018
Vacancy: Postdoctoral ASR ? Speech Researcher on the project BLISS: Behaviour-based Language-Interactive Speaking Systems
The Centre of Language and Speech Technology (CLST) at Radboud University Nijmegen has a vacancy for a post-doctoral speech technology researcher. BLISS [http://hstrik.ruhosting.nl/bliss/] combines research on how using Big Data and information extraction can make a substantial contribution to self-management and improvement of the individual health situation. In this project we will build a smart, personalized, spoken dialogue system (SDS) supporting self-management that is able to meaningfully communicate with people about issues regarding their personal health, well-being and happiness using Automatic Speech Recognition (ASR). For this SDS we need to personalise the ASR component to adapt to speaker variation and to topic changes in dialogue. As a researcher you will combine knowledge of Deep Neural Networks (DNNs, Kaldi) based ASR with experience in SDS.
For more information: http://hstrik.ruhosting.nl/asr-postdoc-bliss/
|
6-43 | (2018-10-16) Postdoctoral researcher, Radboud Univdersity, Nijmegen, The Netherlands
Application deadline: 14 November 2018
Vacancy ? job opening: Postdoctoral researcher [http://hstrik.ruhosting.nl/postdoc-reading-dart/] on the project DART: Dutch ASR-based Reading Tutor [http://hstrik.ruhosting.nl/DART/]
Literacy is a prerequisite to participate in our knowledge society and reading skills are essential for school success. However, developing reading skills requires intensive practice. To facilitate this process we will develop educational software that incorporates Automatic Speech Recognition (ASR) to provide instantaneous, automated feedback on reading aloud. The research will first address how the ASR-based reading software can best be designed and implemented in the school practice and at home. Educational software with optimized ASR technology and different forms of feedback will then be developed and tested in realistic conditions. This research will provide important theoretical and practical insights on the possibilities and effectiveness of ASR-based reading software.
For more information, see http://hstrik.ruhosting.nl/postdoc-reading-dart/
|
6-44 | (2018-10-16) Junior ASR Researcher, Radboud University, Nijmegen, The Netherlands
Application deadline: 14 November 2018
Vacancy ? job opening: Junior ASR - Speech researcher[http://hstrik.ruhosting.nl/asr-junior-dart/] on the project DART: Dutch ASR-based Reading Tutor [http://hstrik.ruhosting.nl/DART/]
Literacy is a prerequisite to participate in our knowledge society and reading skills are essential for school success. However, developing reading skills requires intensive practice. To facilitate this process we will develop educational software that incorporates Automatic Speech Recognition (ASR) to provide instantaneous, automated feedback on reading aloud. The research will first address how the ASR-based reading software can best be designed and implemented in the school practice and at home. Educational software with optimized ASR technology and different forms of feedback will then be developed and tested in realistic conditions. This research will provide important theoretical and practical insights on the possibilities and effectiveness of ASR-based reading software.
For more information, see http://hstrik.ruhosting.nl/asr-junior-dart/
|
6-45 | (2018-10-18) Post-doc 2 years, Aalto University, Finland
Aalto University, Department of Signal Processing and Acoustics (Finland) invites applications for Postdoc position in Speech Processing The Department of Signal Processing and Acoustics is a part of School of Electrical Engineering at Aalto University (Finland). The department consists of four main research areas. The speech communication technology research group (led by Prof. Paavo Alku) works on interdisciplinary topics aiming at describing, explaining and reproducing communication by speech. The main topics of our research are speech production, particularly glottal source analysis, speech parameterization, speaking style conversion, and statistical parametric speech synthesis. We are currently looking for a postdoc to join our research team to work on the team’s research themes. We are particularly interested in candidates with research interest in paralinguistic speech processing, especially related to human health, and in candidates with a background in machine learning –based acoustic-to-acoustic conversion (e.g. voice conversion). We also welcome strong candidates from other areas but previous experience in speech technology research is a must. Postdoc: 2 years. Starting date: January-May 2019 In Helsinki you will join the innovative international computational data analysis and ICT community. Among European cities, Helsinki is special in being clean, safe, Scandinavian, and close to nature, in short, having a high standard of living. English is spoken everywhere. See, e.g., http://www.visitfinland.com/ Requirements The position requires doctoral degree in speech technology, computer science, signal processing or other relevant area, skills for doing excellent research in a group, and outstanding research experience in any of the research themes mentioned above. The candidate should have a strong background in machine learning and/or signal processing and previous experience in speech research. The candidate is expected to perform high-quality research and assist in supervising PhD students. How to apply If you are interested in this opportunity, apply by submitting the following documents in English and in electrical form (use the pdf format only!) by December 31, 2018. Send your application, CV, a transcript of academic records and references directly by email to Professor Paavo Alku. Please insert the subject line “Aalto postdoc recruitment, 2018”. Additional information Paavo Alku, paavo.alku@aalto.fi
|
6-46 | (2018-10-20) POSTDOCTORAL FELLOWSHIP , UNIVERSITY OF LORRAINE, Nancy, Ferance
POSTDOCTORAL FELLOWSHIP OPEN POSITION UNIVERSITY OF LORRAINE TITLE Online Hate Speech Against Migrants COORDINATION Research coordinator: Crem, University of Lorraine (Pr. Angeliki Monnier) Co-coordinator: Loria, University of Lorraine (Dr. Irina Illina MCF HDR, Dr. Dominique Fohr CNRS) TERMS AND VENUE This one-year position will be based at Crem (Metz/Nancy) and Loria (Nancy), France (University of Lorraine). The target start date for the position is April 1st, 2019, with some flexibility on the exact start date. SELECTION CRITERIA PhD in Information and Communication Sciences, or Language Science. Research experience in social media and language data analysis. Very good mastery of the French language. Very good written and oral expression skills, in French and in English. Curiosity, open-mindedness. Autonomy, teamwork skills. HOW TO APPLY Applicants are requested to submit the following materials: • A cover letter applying for the position • Full CV and list of publications • Statement of Research (summary of research achievements and perspectives for upcoming researches) • Academic transcripts (diplomas, courses statements, grades, etc.) (unofficial versions are fine) • Recommendation letters are not obligatory but are strongly recommended. Deadline for application is December 10th, 2018. Applications are only accepted through email. All documents must be sent to angeliki.monnier@univ-lorraine.fr Applicants will be interviewed by an Ad Hoc Commission on January 15th, 2019. DETAILED DESCRIPTION OF THE RESEARCH PROJECT This position is open as part of the Open Language and Knowledge project for Citizens (OLKi), carried out within the IMPACT/Lorraine University of Excellence (LUE) framework. Under the direction of
2 Pr. Angeliki Monnier (Crem), Dr. Irina Illina and Dr. Dominique Fohr (Loria), the post-doctoral fellow will work on online hate speech against migrants. Social context According to the 2017 International Migration Report, the number of migrants worldwide has increased rapidly in recent years. This development is causing great public concern around the world, particularly in Europe. The economic crisis affecting some countries of the Old Continent also feeds feelings of insecurity, encouraging the development of anti-immigrant movements. The media are often pointed out for their tendency to depict refugees and migrants negatively, consolidating fears. A recent EU project has revealed a significant increase in hate speech against immigrants and minorities, who are often accused of being the cause of current economic and social problems. Participatory web and social media seem to amplify the intensity and scope of hate speech. The fight against racism and hatred on the Internet is currently one of the priorities of the French government. On September 20th, 2018, a report commissioned on this topic was given to the Prime Minister, containing twenty proposals to combat hate on the Internet. Scientific context and scope The objective of this postdoctoral contract will be to study the context of the appearance of hateful contents (circumstances of emergence, locutors, dissemination processes, etc.), and to analyze the latter as linguistic productions (narrative approaches, speech acts, enunciation, etc.) in the light of the creation of a lexicon of hate speech in French. Crem and Loria are already involved in this project. Owing to the technology of “neural networks” (deep learning), their collaboration aims to collect and shape a corpus of hateful expressions against migrants, but also to develop an app that could automatically detect hate speech in comments posted on the Internet, especially in media websites. The objective of the Crem-Loria collaboration in this postdoctoral contract is to refine these initial results through qualitative analyses of online hate speech against migrants. The aim is to achieve a better understanding of the social phenomenon of hatred, as well as to improve the development of algorithms used to qualify language. For this reason, the collaboration between Crem and Loria will take an iterative form, between the qualitative analysis of restricted corpora and the work with algorithms. It will cover both the constitution of the corpus (online data collection, search for expressions of hate) and the analysis of this corpus (creation and organization of the lexicon). The research will focus on user-generated content (social networks, comments on media websites, etc.). Part of the analyzed data will come from the OLKi platform, which will also serve as a support for the evaluation of the algorithms developed. FELLOW’S MISSIONS • Collect online data (hate speech against migrants), using technical solutions proposed by Loria. • Analyze these discourses using Humanities and Social Sciences (SHS) approaches: sociopragmatic contexts of hateful comments, linguistic analysis of speeches (speech acts, narratives, enunciation, etc.). Depending on the candidate’s profile, image analysis can be included in the research project, as an additional component. • Contribute to the development of a lexicon in French about online hatred against migrants (supervised by Crem and Loria).
3 • Write scientific articles based on research results, in collaboration with the supervisors and cosigned with them, to be published in scientific journals and / or to be presented at national and / or international conferences. • Attend regular meetings between the two teams. • Provide regular reports on the project’s progress and a final report at the end of it. • The fellow is expected to regularly participate in the Crem and Loria seminars and other research activities. AFFILIATION UNITS Crem, Center for Research on Mediations, comprises more than 230 researchers: approximately 80 tenured scholars, more than 90 doctoral students, 45 associate members and 7 staff members. Its researchers belong to 11 disciplines: nearly 90 % come from the Information and Communication Sciences, Language sciences, French, Literature and Art Sciences; about 10 % are specialists in English and Anglo-Saxon languages, Arabic, Germanic and Romance languages, Anthropology, Psychology and Sociology. Pixel is one of the four Crem teams, with more than 40 members, including 16 tenured scholars, with a specialization in the field of the usages of information and communication technologies. Pixel researchers implement different methodological approaches: surveys, content analyzes, sociotechnical analyzes, usage observations, socio-historical analysis, etc. For years, Pixel has been developing a sustained research activity around several thematic areas: digital educational practices (online learning platforms, serious games), access to online information (search engines, information websites, social networks, micro-blogging, information monitoring), online collaboration (participatory work environments, watch and curation tools, viral dissemination of journalistic content) and creative industries (digital games, expressive games, video games). Website: https://crem.univ-lorraine.fr/lunite/equipe-pixel/ Loria, Laboratory of Research in Computer Science and its Applications is a joint research unit (UMR 7503), common to several institutions: the CNRS, the University of Lorraine and Inria. Since its creation in 1997, Loria's mission is to enhance and promote fundamental and applied research in Computer Sciences. The scientific work is carried out in 28 teams structured in 5 departments, 15 of which are shared with Inria, representing a total of more than 400 persons. Loria is one of the largest laboratories in Lorraine. Multispeech is one of the 28 Loria-INRIA Grand Est teams. It comprises 12 tenured scholars. The Multispeech research project focuses on speech processing, paying particular attention to multisource (source separation, robust speech recognition), multilingual (foreign language learning) and multimodal (audiovisual synthesis) aspects. Its research program is structured in 3 axes: - the explicit modeling of speech, which exploits its physical dimension; - the statistical modeling of speech, which relies on techniques of automatic learning such as the Bayesian models (HMM-GMM) and networks of deep neurons (DNN); - the uncertainties related to the high variability of the speech signal and the imperfection of the models. Website: http://team.inria.fr/multispeech/
|
6-47 | (2018-11-02) Funded PhD position, University of Glasgow, UK
The University of Glasgow is seeking applications for the following funded PhD position in the area of Explainable AI, Planning, and Human-Machine Interaction. Interested students should apply as soon as possible
Eligibility: UK/EU students only
Start date: 1 January 2019
Full details at https://www.findaphd.com/search/ProjectDetails.aspx?PJID=98605
Many future industrial operations will be carried out by teams consisting of humans and machines. In this project, the student will investigate how human-machine trust and explainable/transparent artificial intelligence affect such human-machine collaborative tasks. The work will concentrate on the communication aspects: how the machine communicates its intentions and reasoning processes to the human, and how the human can query and interact with the robot’s plan.
The project will be driven by oilfield drilling applications, which involve control of complex equipment in a dynamic environment, with an increasing level of automation. In this setting, close coordination and trust between the human crew and the automation system is required: the crew must both understand why the machine acts the way it does, as well as be confident it has taken all available information into account.
The student should have excellent experience, enthusiasm and skills in the areas of artificial intelligence and/or automated planning and reasoning and/or natural language or multimodal interaction. Applicants must hold a good Bachelor’s or Master’s degree in a relevant discipline.
The project is an EPSRC iCASE award with Schlumberger Gould Research and it is expected that the student will spend some time working with the company in Cambridge. This will give you a great opportunity of working in an internationally excellent research group as well as a leading player in the oil and gas industry. Travel and accommodation costs will be paid during the time at Schlumberger.
For more information, please contact Dr Mary Ellen Foster MaryEllen.Foster@glasgow.ac.uk. Feel free to contact me directly if you have questions, but only applications received through the University of Glasgow (as linked from the FindAPHD page) can be considered officially.
|
6-48 | (2018-11-04) Tenure positions at University of Santa Cruz, California, USA
UNIVERSITY OF CALIFORNIA, SANTA CRUZ DEPARTMENT OF Computer Science and Engineering Assistant and Associate or Full Professor, Natural Language Processing
The Department of Computer Science and Engineering at the University of California, Santa Cruz invites applications for two positions in the field of Natural Language Processing. One position is at the tenured Associate or early stage Full Professor level, and the other position is at the tenure track Assistant Professor level. We seek outstanding applicants with research and teaching expertise in all areas of Natural Language Processing. We are especially interested in candidates who have contributed to one or more application areas of Natural Language Processing including but not limited to information extraction, dialogue systems, semantic parsing, sentiment analysis, question answering, and machine translation. Both positions are associated with a proposed Professional MS program in Natural Language Processing to be located in the UCSC Silicon Valley Campus in Santa Clara, California. The successful candidates will play an essential role in developing, growing, and shaping this new program. They are expected to develop a research program, advise Ph.D. students in their research area, obtain external funding, develop and teach courses within the undergraduate and graduate curriculum, perform university, public, and professional service, and interact broadly with the large number of Natural Language Processing practitioners in Silicon Valley industrial research and advanced development labs. The successful candidates should be able to work with students, faculty and staff from a wide range of social and cultural backgrounds. In addition to the basic qualifications, applicants at the Associate or Full Professor level should have a demonstrated record of publications, demonstrated experience in university teaching at the undergraduate and graduate level or closely analogous activities, demonstrated record of extramural funding or similar success with garnering support for research endeavors, experience with research project management, and professional service; we also value industrial experience, and a track record of building product and applications based on NLP technology. We welcome candidates who understand the barriers facing women and minorities who are underrepresented in higher education careers (as evidenced by life experiences and educational background), and who have experience in equity and diversity with respect to teaching, mentoring, research, life experiences, or service towards building an equitable and diverse scholarly environment. The primary offices for these positions are located in Santa Clara, due to the expectation of teaching and mentoring students in this location. Space for PhD students for these positions is also located in Santa Clara. Graduate level teaching duties will be mainly at the Santa Clara campus with undergraduate courses to be taught at the Santa Cruz campus. The successful applicants will typically spend multiple days per week in Santa Clara and are also expected to spend on average one day per week on the Santa Cruz campus (more when teaching an undergraduate class on the Santa Cruz campus). The ability for ondemand transportation between Santa Clara and Santa Cruz with or without accommodations is essential. The Computer Science and Engineering Department has nationally and internationally known research groups in Machine Learning, Data Science, Natural Language Processing and related fields. Our beautiful campus has a long history of embracing groundbreaking interdisciplinary work, and the proximity of the campus to Silicon Valley affords our faculty extensive opportunities for interactions and collaborations with industry. ACADEMIC TITLES Assistant Professor and Associate or early stage Full Professor SALARY Commensurate with qualifications and experience; academic year (9-month basis). BASIC QUALIFICATIONS A Ph.D. or equivalent foreign degree in Computer Science or a relevant field expected to be completed by June 30, 2019; demonstrated record of research and teaching.
POSITION AVAILABLE July 1, 2019 (with academic year beginning September 2019). Degree must be in hand by June 30, 2019. APPLICATION REQUIREMENTS Applications are accepted via the UCSC Academic Recruit online system; all documents and materials must be submitted as PDFs. APPLY AT https://recruit.ucsc.edu/apply/JPF00657 Please refer to Position # JPF00657-19 in all correspondence. Documents/Materials • Letter of application that briefly summarizes your qualifications and interest in the position • Curriculum vitae • Statement addressing contributions to diversity through research, teaching, and/or service (required). Guidelines on diversity statements can be viewed at https://senate.ucsc.edu/committees/caad-committee-on-affirmative-action-anddiversity/DivStateGuidelines.pdf. • Statement of research plans • Statement of teaching interests and experience • 3–4 selected publications • 3 confidential letters of recommendation* Please note that your references, or dossier service, will submit their confidential letters directly to the UC Recruit System. *All letters will be treated as confidential per University of California policy and California state law. For any reference letter provided via a third party (i.e., dossier service, career center), direct the author to UCSC’s confidentiality statement at http://apo.ucsc.edu/confstm.htm. RECRUITMENT PERIOD Full consideration will be given to applications completed by December 3rd, 2018. Applications received after this date will be considered only if the position has not been filled. UC Santa Cruz faculty make significant contributions to the body of research that has earned the University of California the ranking as the foremost public higher education institution in the world. In the process, our faculty demonstrate that cutting-edge research, excellent teaching and outstanding service are mutually supportive. The University of California is an Equal Opportunity/Affirmative Action Employer. All qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability, age, or protected veteran status. UC Santa Cruz is committed to excellence through diversity and strives to establish a climate that welcomes, celebrates, and promotes respect for the contributions of all students and employees. Inquiries regarding the University’s equal employment opportunity policies may be directed to the Office for Diversity, Equity, and Inclusion at the University of California, Santa Cruz, CA 95064 or by phone at (831) 459-2686. Under Federal law, the University of California may employ only individuals who are legally able to work in the United States as established by providing documents as specified in the Immigration Reform and Control Act of 1986. Certain UCSC positions funded by federal contracts or sub-contracts require the selected candidate to pass an E-Verify check (see https://www.uscis.gov/e-verify). More information is available at the APO website (see https://apo.ucsc.edu/policy/capm/104.000%20.html) or call (831) 459-4300. UCSC is a smoke & tobacco-free campus. If you need accommodation due to a disability, please contact the Academic Personnel Office at apo@ucsc.edu (831) 459-4300. VISIT THE APO WEB SITE AT http://apo.ucsc.edu [10/2/2018]
|
6-49 | (2018-11-06) Stage au LIMSI, Orsay, France
# Intitulé
Comparaison de fonctions objectif pour l?apprentissage de représentation : application à la vérification du locuteur et au calcul de similarité sémantique textuelle
# Résumé
Le rôle de la fonction objectif dans l?apprentissage neuronal est de fournir une mesure de la performance du réseau de neurones (i.e. sa capacité à répondre correctement à une tâche précise). Cette mesure, lorsqu?elle est dérivable, permet alors de mettre à jour le réseau de neurones par rétro-propagation du gradient de telle sorte que sa performance soit améliorée. Parmi ces fonctions objectif, on peut par exemple citer la ?contrastive loss? [HCL06], la ?triplet loss? [SKP15], ou encore la ?center loss? [WZLQ16]. L?objectif de ce stage est de comparer différentes fonctions objectif permettant l?apprentissage des représentations neuronales adaptées à des tâches applicatives telles que la vérification du locuteur et la similarité sémantique textuelle. La plupart de ces méthodes ont été initialement proposées dans le domaine de la vision par ordinateur pour la reconnaissance d?image (et de visage en particulier) et certaines ont ! été appliquées récemment à tâche de vérification du locuteur [Bre17]. Cependant, elles n?ont pas encore été utilisées pour la tâche de similarité sémantique textuelle.
# Description des tâches
* Implémentation des différentes fonctions objectif Après une étape d?étude de la littérature sur le sujet, la première tâche consiste à implémenter les fonctions objectif les plus prometteuses en les testant sur des exemples jouet bien maîtrisés (tels que la base MNIST de reconnaissance de chiffre manuscrit, par exemple).
* Application à la vérification du locuteur La tâche de vérification du locuteur consiste à déterminer si deux signaux audio proviennent ou non de l?enregistrement du même locuteur. On utilisera la base de données VoxCeleb [CNZ18, NCZ17] pour mener ces expériences. Elle contient plus d?un million d?enregistrements correspondant à plus de 6000 locuteurs, et constitue de fait le plus grand corpus librement disponible pour l?identification et la vérification du locuteur.
* Application au calcul de similarité sémantique textuelle La tâche de similarité sémantique textuelle (SST) est motivée par le fait que la modélisation de la similarité sémantique des phrases est un problème fondamental en compréhension de la langue, pertinent pour de nombreuses applications, notamment la traduction automatique, la recherche de réponses à des questions précises (ou questions-réponses), le dialogue dialogue, etc. Cette tâche consiste à évaluer dans quelle mesure deux phrases sont sémantiquement équivalentes. Plusieurs approches ont étés proposées [CDA + 17], qui sont fondées généralement soit sur les méthodes classiques en traitement automatique des langues (TAL), soit sur des méthodes d?apprentissage profond. La première approche s?appuie sur l?utilisation d?un classifieur enrichi par différents types de descripteurs : sémantiques, syntaxiques, etc. La deuxième est fondée sur l?exploitation des représentations de phrases et des architectures neuronales. Dans le cadre des ca! mpagnes d?évaluation SemEval, la tâche de SST a été proposée. Dans ce cadre, la tâche consiste pour le système de SST à attribuer un score de similarité à chaque paire de phrase sur une échelle de 0 (les deux phrases sont complètement différentes) à 5 (les deux phrases sont complè tement identiques)? Notre objectif dans ce stage est de pouvoir étudier les différentes fonctions objectif sur la tâche SST et de comparer nos résultats aux résultats obtenus par les différents systèmes ayant participé à la tâche 5 (en anglais) de la campagne d?évaluation SemEval 2017. Ce système fait la combinaison des approches de TAL et d?apprentissage profond.
# Profil attendu
* Master 2 en Informatique (ou e?quivalent), avec au moins une spe?cialite? en apprentissage, traitement automatique de la langue, et/ou traitement de la parole. * Compe?tence techniques : python, linux
# Informations pratiques
* Dure?e du stage : 5-6 mois (stage pouvant donner lieu a? une poursuite en the?se) * De?but du stage : date de de?but a? de?finir avec le stagiaire * Gratification : environ 570? par mois. remboursement frais de transport et subvention cantine
# Références
[Bre17] Hervé Bredin. Tristounet : triplet loss for speaker turn embedding. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5430?5434. IEEE, 2017.
[CDA + 17] Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task 1 : Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint arXiv :1708.00055, 2017.
[CNZ18] Joon Son Chung, Arsha Nagr ni, and Andrew Zisserman. Voxceleb2 : Deep speaker recognition. arXiv preprint arXiv :1806.05622, 2018.
[HCL06] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant mapping. In CVPR 2006, pages 1735?1742. IEEE, 2006.
[NCZ17] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. Voxceleb : a large-scale speaker identification dataset. arXiv preprint arXiv :1706.08612, 2017.
[SKP15] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet : A unified embedding for face recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 815?823, 2015.
[WZLQ16] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A discriminative feature learning approach for deep face recognition. In European Conference on Computer Vision, pages 499?515. Springer, 2016.
|
6-50 | (2018-011-05) PhD student ?Morphology in spoken word recognition models? Radboud University, Nijmegen, The Netherlands
PhD student ?Morphology in spoken word recognition models?
Location: Radboud University, Nijmegen
Duration: 4 years
Starting date: February 2019
Starting salary: Around 1600 euros a month
Supervision: The PhD project will be supervised by Louis ten Bosch, Mirjam Ernestus, and Ingo Plag . The project is part of the ?Spoken Morphology? research unit (http://www.spoken-morphology.hhu.de/en.html)
Requirements: We are looking for candidates with ? Master degree in Linguistics or in Artificial Intelligence; ? Clear interest in speech and language; ? Expertise in qualitative and/or quantitative research methods, preferably including large scale data analyses and statistical analyses; ? Effective verbal and written communicative skills in English.
Application: Please send your motivation letter and extensive resume (including grades for all university courses) before 1 December 2018 to m.ernestus@let.ru.nl
Questions: l.tenbosch@let.ru.nl or m.ernestus@let.ru.nl
|