![]() |
ISCApad #322 |
Monday, April 07, 2025 by Chris Wellekens |
6-1 | (2024-10-03) Researcher positions in Speech and Natural Language Processing (Junior & Senior Positions) @ Vicomtech, San Sebastian/Bilbao, Spain Researcher positions in Speech and Natural Language Processing (Junior & Senior Positions) @ Vicomtech, San Sebastian/Bilbao, Spain
Vicomtech (https://www.vicomtech.org/en/), an international applied research centre specialised in Artificial Intelligence, Visual Computing and Interaction located in Spain, has several research positions in the field of speech and natural language processing.
We are seeking talented and motivated individuals to join our dynamic Speech and Natural Language Technologies team in either our Donostia - San Sebastián or Bilbao premises. If you have experience in speech and/or natural language processing technologies and are passionate about applying cutting-edge research to solve real-world needs through advanced prototypes, this opportunity is for you!
Whether you are a junior researcher (BSc/MSc graduate) looking to kickstart your career or a senior researcher (PhD graduate) eager to take on research leadership roles, we are interested in your profile. We offer the perfect environment with outstanding equipment and the best human team for growth. You will participate in advanced research and development projects, with opportunities to manage high-profile projects and/or lead technical teams depending on your experience.
Key Responsibilities:
Requirements:
Preferred Skills (Not Required but Valued):
What We Offer:
If you are passionate about research and eager to apply or develop your expertise to real-world challenges, we encourage you to send us your CV and join our forward-thinking team!
To apply via LinkedIn: https://www.linkedin.com/jobs/view/4034768411
| |||||
6-2 | (2024-10-04) Two internships at Laboratoire d'Informatique de l'Université du Mans (LIUM), France L'équipe Language and Speech Technology du Laboratoire d'Informatique de l'Université du Mans (LIUM) propose deux sujets de stage (https://lium.univ-lemans.fr/stages/) sur la traduction vocale (Speech-To-Speech Translation) pour les langues peu dotées.
-- Études des systèmes automatiques de traduction vocale ; -- Système de traduction vocale – Langues peu dotées vers Langues richement dotées
| |||||
6-3 | (2024-10-12) Assistant Professor of Computational Linguistics, Rochester Institute of Technology, NY, USA Assistant Professor of Computational Linguistics Rochester Institute of Technology
Detailed Job Description
The Department of Psychology and Department of Modern Languages and Cultures at the Rochester Institute of Technology jointly invite applications for a full-time, 9-month tenure-track Assistant Professor of Computational Linguistics, beginning in August 2025. Candidates are expected to have an earned doctoral degree (in hand by August 2025) in Linguistics, Computational Linguistics, or a related field.
Successful candidates should demonstrate computational expertise, strong research talent, and initiative in grant writing. Candidates should also have a plan for excellence in teaching and student mentoring at the undergraduate and graduate levels. Applicants must be able to teach our courses in language technology, natural language processing, and/or speech processing. In addition, applicants should be able to teach foundational linguistics from a cross-linguistic perspective, as well as courses in one or more linguistics or cognitive science subfields. Proficiency in a language other than English is preferred, and we welcome research or teaching experience involving language learning. The position requires a strong commitment to teaching and mentoring, active research and publication, and a strong potential to attract external funding. Research and teaching are priorities for faculty at RIT, and all faculty are expected to mentor students through advising, research, and in-class experiences.
The computational linguistics-related programs at RIT serve a rapidly expanding student population at a technical university. We are particularly looking for a faculty colleague who can also contribute to the interdisciplinary Ph.D. program in Cognitive Science and the M.S. in Artificial Intelligence. In addition, RIT provides many opportunities for collaborative research across the institute in areas such as linguistics of sign languages and languages other than English, artificial intelligence, human-centered computing, and cybersecurity. RIT faculty have access to extensive research computing resources.
We are seeking an individual who has the ability and interest in contributing to a community committed to student centeredness; professional development and scholarship; integrity and ethics; respect, diversity and pluralism; innovation and flexibility; and teamwork and collaboration. Select to view links to RIT’s core values, honor code, and diversity commitment.
Department/College Description
The Department of Psychology at RIT offers B.S. and M.S. degrees, Advanced Certificates, minors, immersions, electives, and co-supports interdisciplinary graduate degrees including the Ph.D. program in Cognitive Science and the M.S. program in Artificial Intelligence. It also contributes to joint undergraduate degrees in Human-Centered Computing and Neuroscience.
The Department of Modern Languages and Cultures offers a B.S. in Applied Modern Language and Culture with tracks in Chinese, French, Japanese, and Spanish, in addition to minors, immersions, and general education courses in Language Science, American Sign Language and Deaf Cultural Studies, Arabic, Chinese, French, German, Italian, Japanese, Latino/Latina/Latin American Studies, Portuguese, Russian, and Spanish. The Department houses a Modern Language Technology Center where faculty and students actively integrate technology into language teaching and learning.
The College of Liberal Arts is one of nine colleges within Rochester Institute of Technology. The College has over 150 faculty in 13 departments in the arts, humanities and social sciences. The College currently offers fourteen undergraduate degree programs and five Master degrees, serving over 800 students. The Ph.D. program in Cognitive Science, with language as one of the areas, is interdisciplinary with multiple partner units across the university. The College also jointly delivers the M.S. in Artificial Intelligence with other colleges of the university.
We encourage the creation, development, dissemination, and application of human knowledge in the arts, humanities, and social sciences by promoting innovative teaching, scholarship, and research, thus providing a comprehensive education for all RIT students. We strive to prepare students for a lifetime of personal growth and responsible citizenship in an increasingly technological and rapidly changing society by maintaining and promoting the intellectual climate on campus, contributing to students’ awareness and understanding of diversity, and enhancing students’ abilities to reason critically and communicate effectively. We value a rigorous liberal arts education that encourages innovative experiential learning and active scholarship, the highest ethical standards, the educational and social benefits of diversity and global awareness, an interdisciplinary and collaborative environment of openness and academic freedom, a working environment in which all staff and faculty enjoy respect and recognition, and the active and meaningful participation of all members of the College community.
Required Minimum Qualifications
• Ph.D. (in hand by August 2025) in Linguistics, Computational Linguistics, or a related field. • Have demonstrated ability to conduct independent research in computational linguistics. • Have consistently and recently published. • Demonstrate potential for excellence in teaching language technology, natural language processing, and/or speech processing. • Demonstrate potential for excellence in teaching foundational linguistics from a cross-linguistic perspective, as well as courses in one or more linguistics or cognitive science subfields. • Demonstrate potential for excellence in supervising student research. • Demonstrate potential for external research grant attainment. • Show a career trajectory that emphasizes a balance between research and teaching. • Ability to contribute in meaningful ways to the College’s continuing commitment to cultural diversity, pluralism, and individual differences.
How To Apply
Apply online at http://careers.rit.edu/faculty; search openings, then Keyword Search 9260BR. Please submit your application, curriculum vitae, cover letter addressing the listed qualifications and upload the following attachments:
* A research statement that includes information about previous grant work, the potential for future grants, and information about one-on-one supervision of student research * A brief teaching philosophy * The names, email addresses, and phone numbers of three references * Contribution to Diversity Statement
You can contact the co-chairs of the search committee, Cecilia Alm, Ph.D. and Zhong Chen, Ph.D., with questions on the position at: cecilia.o.alm@rit.edu and z.chen@rit.edu. Review of applications will begin November 15, 2024 and will continue until an acceptable candidate is found.
RIT does not discriminate. RIT promotes and values diversity, pluralism and inclusion in the work place. RIT provides equal opportunity to all qualified individuals and does not discriminate on the basis of race, color, creed, age, marital status, sex, gender, religion, sexual orientations, gender identity, gender expression, national origin, veteran status or disability in its hiring, admissions, educational programs and activities.
| |||||
6-4 | (2024-10-16) Assistant Professor Positions, University of Texas at El Paso, TX, USA Assistant Professor Positions at the University of Texas at El Paso
The University of Texas at El Paso (UTEP) has 3 Assistant Professor positions available in the Department of Computer Science: one in AI and two in any area of CS, including AI. UTEP has an active research group in Spoken Dialog, and new Regents Research Excellence support for a project on the Prosodic Aspects of Spanish, English and Cross-Language Communication, for which an available Research Assistant Professor position may soon be announced. Informal inquiries are welcome; please contact <a href=”https://www.cs.utep.edu/nigel/”>Professor Nigel Ward</a>. Applications are being accepted online <a href=”https://utep.interviewexchange.com/jobofferdetails.jsp?JOBID=181741”> for the AI position</a> and <a href=”https://utep.interviewexchange.com/jobofferdetails.jsp;jsessionid=6A64174D0B462EB90FF70FB62CA6B6E7?JOBID=181849”> for the CS positions</a>. Information will be shared across the searches, so there is no need to apply to both.
| |||||
6-5 | (2024-10-22) Stage à l'Université du Mans, France Stage à 'lUniversité du Mans, France Titre : Construction de Sound Zones par apprentissage automatique sur un large jeu de données
Site : Le Mans Encadrant(s) : Théo Mariotte (LIUM), Manuel Melon (LAUM), Marie Tahon (LIUM) Début du stage : entre janvier et mars 2024 Date limite de candidature : 15/12/2024
Descriptif : Le stage vise à mettre en œuvre des systèmes d’apprentissage automatique pour la construction de zones d’écoute différenciées (Sound zones).
Contexte
La mise en place de zones d'écoute différenciées (Sound zones) [1] trouve des applications dans de nombreux contextes tels que la diffusion de contenu audio personnalisé dans les habitacles de véhicules. Ces méthodes permettent de contrôler le niveau acoustique émis dans des zones définies de l'espace, dénommées claire et sombre.Dans la première, le niveau acoustique est rehaussé pour permettre à transmission du signal utile. Dans la seconde, le niveau est atténué afin de restreindre le signal acoustique transmis à la zone claire. La construction de ces zones est possible à l’aide d'un réseau de haut-parleurs et de microphones.
Les méthodes de la littérature permettant la mise en œuvre de zones d'écoute différenciées exploitent l'optimisation sous contrainte (ex: Acoustic Contrast Control (ACC), Pressure Matching (PM). Plus récemment, les travaux de Pepe et al. [4] ont proposé une approche utilisant les réseaux de neurones profonds. D'autre part, des jeux de données ont été publiés pour la reconstruction de champ acoustique (ISOBEL [2]) et la reproduction de sound zones (Zhao et al. [3]). Ces deux considérations ouvrent la voie à l’utilisation de méthodes neuronales pour la construction de sound zones.
Objectifs Le stage proposé vise dans un premier temps à reproduire une méthode de la littérature et de l'appliquer sur des jeux de données publics. Dans un second temps, il sera envisagé d’améliorer cette approche et d’évaluer sa robustesse selon différents critères (environnement acoustique, position du sujet...).
Phase 1 :
Phase 2 :
Il est également envisagé de concevoir un démonstrateur permettant à deux utilisateur·ices partageant le même espace d'écouter un texte lu dans deux langues différentes. Ce démonstrateur pourrait être présenté à la prochaine Biennale Le Mans Sonore en 2026.
Laboratoires
Le Laboratoire d’Acoustique de l’Université du Mans (LAUM) possède une grande expertise sur les méthodes de reproduction et de contrôle du champ acoustique. Manuel Melon a mené et encadré de nombreux travaux autour de la thématique des sound zones.
Le Laboratoire d’Informatique de l’Université du Mans (LIUM) est historiquement orienté vers les thématiques de traitement automatique de la parole avec une forte dominante pour les approches d’apprentissage automatique profond. Marie Tahon travaille notamment sur des méthodes neuronales pour la reconnaissance des émotions et la synthèse parole avec un intérêt pour l’interprétabilité. Théo Mariotte travaille sur des méthodes de traitement audio à l’aide de réseaux de neurones, et développe notamment des méthodes utilisant des antennes de microphones.
Le stagiaire bénéficiera de l’expertise des deux laboratoires tant sur la dimension acoustique (LAUM) que sur la dimension informatique et apprentissage automatique (LIUM).
Profil du candidat : Candidat·e motivé·e par l’intelligence artificielle et les méthodes de reproduction de champ acoustique, inscrit·e en master informatique ou acoustique.
Pour candidater : Envoyer CV + lettre de motivation à : theo.mariotte@univ-lemans.fr
Ressources :
[1] T. Betlehem, W. Zhang, M. A. Poletti, et T. D. Abhayapala, « Personal Sound Zones: Delivering interface-free audio to multiple listeners », IEEE Signal Process. Mag., vol. 32, no 2, p. 81‑91, mars 2015, doi: 10.1109/MSP.2014.2360707.
[2] M. S. Kristoffersen, M. B. Møller, P. Martínez-Nuevo, et J. Østergaard, « Deep Sound Field Reconstruction in Real Rooms: Introducing the ISOBEL Sound Field Dataset », 12 février 2021, arXiv: arXiv:2102.06455.
[3] S. Zhao, Q. Zhu, E. Cheng, et I. S. Burnett, « A room impulse response database for multizone sound fieldreproduction (L) », The Journal of the Acoustical Society of America, vol. 152, no 4, p. 2505‑2512, oct. 2022, doi: 10.1121/10.0014958.
[4] G. Pepe, L. Gabrielli, S. Squartini, L. Cattani, et C. Tripodi, « Deep Learning for Individual Listening Zone », in 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP), Tampere, Finland: IEEE
| |||||
6-6 | (2024-10-23) Stage à l'Université du Mans (2), France Stage à l'Université du Mans, France Title: Machine Learning for Acoustic-Based Keystroke Recognition: A Study on Security Vulnerabilities Host laboratory : LIUM, LAUM Location : Le Mans Supervisors : Kais Hassan, Meysam Shamsi Beginning of internship : February 2025 Application deadline : 10/12/2024 Keywords: Keystroke Recognition, Machine Learning, Cybersecurity, Acoustic Signal Categorization In an era where data breaches and cyber threats are becoming increasingly sophisticated, this project explores the vulnerabilities of everyday devices through Acoustic Side-Channel Attacks on Keyboards [1,2,3]. The goal is to demonstrate how the content of keystrokes can be compromised by simply recording the sounds produced by a keyboard. This research leverages cutting-edge technology to expose keystroke vulnerabilities, underscoring the need for robust security measures in the face of growing digital threats. This internship is a preliminary study with three main objectives: ● Optimization of efficiency, minimization of data collection costs and maximization of keystrokes recognition accuracy: Develop efficient methods for collecting and synchronizing audio data to reduce overhead. Use advanced techniques to train a highly effective model across various conditions with minimal training data. ● Analyze the user behavior from acoustic signal: Categorize users' typing behaviors based on acoustic signals and assess the model’s recognition accuracy. Use this analysis to establish security guidelines that address vulnerabilities in acoustic-based keystroke detection. ● Raise Security Awareness: Highlight the risks associated with acoustic side-channel attacks and propose countermeasures to protect sensitive information from these vulnerabilities. Project Overview: 1. Data Collection Interface: Develop a synchronized recording system to capture keystrokes and the associated acoustic signals. This involves using two devices: one to log the exact timing of the keystrokes and another to record the corresponding sound. The challenge is to align these recordings with high precision to create a robust training dataset. 2. Machine Learning Model Training: Implement a deep neural network for keystroke recognition from the recorded audio. This includes adapting pre-trained models [4] used for speech recognition to identify individual keystrokes. The objective is to achieve high accuracy with minimal data by employing state-of-the-art techniques in audio classification. 3. Performance Evaluation: Assess the model's effectiveness under various conditions. This involves testing with different keyboards, typists, environments, and microphones. The aim is to evaluate how the model performs across diverse scenarios and to identify potential weaknesses. 4. Analysis and Countermeasures: Conduct an in-depth analysis of typing behaviors and scenarios that may challenge the attack, e.g. [5]. Explore strategies to mitigate such acoustic attacks and enhance the security of keystroke data. This project not only aims to expose a critical security vulnerability, but also to lay the foundation for long-term interdisciplinary research. State-of-the-art machine learning algorithms in speech processing have already shown promising results in decoding audio signals [4]. In the long term, a deeper study of human behavior, such as [6], and communication through acoustic signals can be envisioned. Reference: [1]. Taheritajar, A., Harris, Z. M., & Rahaeimehr, R. (2023). A Survey on Acoustic Side Channel Attacks on Keyboards. arXiv preprint arXiv:2309.11012. [2]. Bai, J. X., Liu, B., & Song, L. (2021, October). I know your keyboard input: A robust keystroke eavesdropper based-on acoustic signals. In Proceedings of the 29th ACM International Conference on Multimedia (pp. 1239-1247). [3]. Harrison, J., Toreini, E., & Mehrnezhad, M. (2023, July). A practical deep learning-based acoustic side channel attack on keyboards. In 2023 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW) (pp. 270-280). IEEE. [4]. Mohamed, A., Lee, H. Y., Borgholt, L., Havtorn, J. D., Edin, J., Igel, C., ... & Watanabe, S. (2022). Self-supervised speech representation learning: A review. IEEE Journal of Selected Topics in Signal Processing, 16(6), 1179-1210. [5]. Rodrigues, D., Macedo, G., Conti, M., & Pinto, P. (2024, June). A Prototype for Generating Random Key Sounds to Prevent Keyboard Acoustic Side-Channel Attacks. In 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON) (pp. 1287-1292). IEEE. [6]. Kołakowska, A. (2015, June). Recognizing emotions on the basis of keystroke dynamics. In 2015 8th International Conference on Human System Interaction (HSI) (pp. 291-297). IEEE. Applicant profile : Candidate motivated by Artificial Intelligence, Cybersecurity, and Acoustics, currently enrolled in a Master's degree program in Computer Science, Acoustics, Signal Processing, or related fields For application: Please send your CV, cover letter, and most recent academic transcript (grade sheet) to meysam.shamsi@univ-lemans.fr or kais.hassan@univ-lemans.fr before 10/12/2024.
| |||||
6-7 | (2024-11-05) Ingénieur·e de recherche en intelligence artificielle pour la pédagogie, Université Grenoble-Alpes, France Dans le cadre du projet EFELIA MIAI, Les laboratoires de recherche et départements des IUT de l’UGA développent des actions de formation en Intelligence Artificielle. À ce titre, ils recherchent un·e ingénieur·e de recherche en IA pouvant contribuer à l'élaboration de ressources et de pratiques pédagogiques pour les formations de l'institut ainsi qu'au développement des activités de recherche du Laboratoire d'Informatique de Grenoble dans le domaine des LLMs (Large Language Models) notamment dans le cadre du projet ANR Pantagruel (https://pantagruel.imag.fr/).
Le détail du poste est accessible sur le site de l'UGA https://emploi.univ-grenoble-alpes.fr/offres/ingenieur-de-recherche-en-intelligence-artificielle-f-h--1504906.kjsp?RH=1135797159702996 Suivez le lien ci-dessus et cliquez sur 'Je postule'
*Date limite* Le poste est ouvert jusqu'à ce qu'il soit pourvu.
*Rémunération* À partir de 2289€ mensuel brut et en fonction de l’expérience.
| |||||
6-8 | (2024-11-06) Proposition de stage, BEA, Le Bourget, Ile-de-France, France Objet : Proposition de stage « Parole superposée dans les cockpits d'aeronefs: annotations et essais acoustiques» Lieu : Laboratoire Audio-CVR, BEA, 10 rue de Paris, 93350 Le Bourget Déplacements en métropole de plusieurs jours consécutifs à prévoir (pris en charge par le BEA) Contexte d’application du stage Dans le cadre des enquêtes sur les accidents et incidents de l’aviation civile et militaire, le département technique du BEA (pour l’aviation civile) et le laboratoire RESEDA (pour l’aviation militaire) sont chargés de la récupération des données contenues dans les enregistreurs de vol communément appelés « boîtes noires » par le grand public. Dans le cadre du projet de recherche ANR / AID BLeRIOT (Bea Lisic Reseda Irit investigation on aerOnautic speech Transcription), le BEA et RESEDA ont la charge de fournir et produire des données de paroles superposées pour investiguer de nouvelles méthodes de transcription automatique adaptées au contexte des enregistreurs vocaux de vol et répondant aux besoins nés de la réglementation imposant une augmentation significative de la durée d’enregistrement (passant de 2h à 25h). Ces données annotées seront utilisées par des partenaires du projet pour générer des modèles pour la retranscription automatique et seront évalués dans un cadre scientifique ultérieurement. Les travaux seront réalisés au département technique du BEA sur une durée de 4 à 6 mois, avec des déplacements de plusieurs jours en France métropolitaine pour les campagnes de mesures acoustiques, et en collaboration avec les partenaires universitaires, à savoir le Laboratoire d‘Informatique Signal et Image de la Côte d’Opale (LISIC) et l’Institut de Rechercheen Informatique de Toulouse (IRIT). Le/la stagiaire sera intégré-e à l’équipe du laboratoire d’analyse audio du BEA ; il/elle aura l’occasion de découvrir les techniques d’exploitation et d’analyse des données audio réalisées dans le cadre du support aux enquêtes de sécurité de l’aviation civile. Travaux à réaliser lors du stage Au cours de ce stage la/le stagiaire devra :
Profil du/de la candat-e
Outils utilisés
Bibliographie - Puigt, M., Bigot, B., Devulder, H., Introducing the « Cockpit Party Problem » : blind source separation enhances aircraft cockpit speech transcription, J. Audio Eng. Soc., 2024. https://hal.science/hal-04666683v1 - BEA, Ce qu’il faut savoir sur les enregistreurs de vol, 2009. - Bigot, B., Bredin, H., Delmaire, G., Guerin, H., Menez, C., Pinquier, J., Puigt, M., Roussel, G., BLeRIOT Transcription et Investigation du Bea, du Lisic, de Reseda et de l’Irit sur la transcription de parole aéronautique, projet de recherche ANR/AID, 2024.
Contact et encadrement de stage Lionel Feugère – Laboratoire Audio-CVR Enquêteur spécialisé et chercheur, docteur en acoustique Email : lionel.feugere@bea.aero Tel: +33 1 49 92 74 07
Candidature Envoyer un CV et une lettre de motivation à lionel.feugere@bea.aero Les candidatures seront analysées au fil de l’eau.
| |||||
6-9 | (2024-11-06) PhD and postdoc vacancy in multimodal search, The University of Utrecht, The Netherlands We are looking for PhD or postdoctoral students for multimodal processing of cultural digital archives at the Interaction Division of Utrecht University, the Netherlands. The deadline for applications is 13 November.
Job description
Are you passionate about developing cutting-edge AI techniques to enhance interaction and communication across multiple modalities, such as text, pictures, audio, and video? Join the large scale HAICu NWA-ORC project to help unlock the potential of cultural digital archives through multimodal use, providing richer context and a more comprehensive analysis of current complex issues in society. If this fits your expertise and interests, the Interaction Division of Utrecht University is seeking you!
Your job
We are looking for a PhD and a postdoctoral researcher to work within the multi-partner HAICu NWA-ORC project. This vacancy is for the Postdoc position, the PhD position is being advertised simultaneously:
PhD Position on Multimedia Analysis in the HAICu Project. There are two research topics tackled in parallel for this project (see description below). Based on the applications, the topics will be assigned at PhD or Postdoc level. Both researchers will collaborate within the project.
This project is implemented by an ambitious consortium including many universities, knowledge institutions, archives, foundations, cultural institutions and business partners in the Netherlands. It aims to use improved access to digital heritage to tutor the Digital Citizen in the use of big data. It brings together AI researchers and Digital Humanities scholars to seek solutions to the problem of inadequate data-mining tools we have, aiming to derive information from the continuous stream of data about the present and the past. This will help citizens and other regular users, heritage curators and journalists who are interested in tapping heritage collections, as well as civic organizations and authorities interested in improving civic participation.
There are two research topics. You can indicate in your motivation letter whether you prefer one or the other.
Research topic 1 targets visual and multimodal feature learning for news ecosystems, analysing the complex multidimensional feature space of visual information to support data-driven journalism. This includes experiments for accountability, transparency, inclusiveness, and misinformation. The key technology is multimodal deep learning, and its extensions for these additional targets.
Research topic 2 targets audio and multimodal feature learning beyond words, such as intonation, tone, stress and rhythm, in relation to conveying emotion or messages, to support data-driven journalism. We will research audio features (e.g. for speech and music) and their relation to effective message conveying in news collections with audio and video, and innovate multimodal search by integrated feature learning in both visual and audio at the same time.
Research will include testing, validation and evaluation on large scale and interoperable collections, in cooperation with the societal partners in the project, including the Netherlands Institute for Sound and Vision, the National Archive, and the National Library of the Netherlands. The research will take place in collaboration with the HAICu fieldlab ‘Deep Journalism’, which develops functionality for searching for items about a similar topic from different archives and with various modalities to support news journalists.
The Interaction Division is part of the department of Information and Computing Sciences. It develops novel techniques to research technology-mediated communication and interaction between people, and communication and interaction between systems and people (users). The technologies for interaction make use of various modalities, in particular visual, auditory, and haptic modes, as well as combinations of these. Three of the chairs in the division are collaborating in this project. The Multimedia group (Professor Remco Veltkamp), the Music Information Computing group (Professor Anja Volk), and the Social and Affective Computing group (Professor Albert Salah).
Postdoc position:
PhD position:
| |||||
6-10 | (2024-11-11) Deux thèses financées à l'INRIA, France. Inria ouvre deux offres de thèse financées :
| |||||
6-11 | (2024-11-10) Stage de 6 mois, Transcription et Alignement de la Parole Théâtrale par Analyse Prosodique, Universite de Grenoble-Alpes, FranceTranscription et Alignement de la Parole Théâtrale par Analyse ProsodiqueContexte :
Objectifs :
Pour aller plus loin, des approches multimodales pourront être explorées. Par exemple, l’utilisation des signaux visuels tels que les mouvements des lèvres ou les expressions faciales des comédiens pourrait améliorer la précision de la transcription, particulièrement dans les environnements acoustiquement complexes. Enfin, des techniques d’adaptation stylistique seront mises en œuvre pour mieux gérer les variations de registre, qu’il s’agisse de langue classique, contemporaine ou poétique. Encadrement et motivation : Ce stage est proposé à des étudiants inscrits en M2 d’informatique et intelligence artificielle. Il sera encadré par Rémi Ronfard, directeur de recherche INRIA, directeur scientifique de l’équipe ANIMA du laboratoire LJK et du centre INRIA de l’université Grenoble Alpes, et responsable de l’action exploratoire ITHEA (informatique théâtrale) ; et Benjamin Lecouteux, professeur de l’Université Grenoble Alpes, membre de l’équipe GETALP du Laboratoire d’Informatique de Grenoble (LIG), et chercheur associé de l’action exploratoire ITHEA. L’équipe ANIMA est spécialisée en informatique graphique et vision par ordinateur. Elle a constitué depuis plusieurs années un corpus de captations vidéo de pièces de théâtre, indexées et analysées à l’aide d’algorithmes de vision par ordinateur (détection, suivi et reconnaissance des acteurs) et accessibles en ligne sur le site http://kinoai.inria.fr à l’intention des chercheurs en études théâtrales. L’équipe GETALP est ici spécialisée dans le traitement de la parole et de la langue naturelle. Elle s’intéresse en particulier à la parole théâtrale, qui est incarnée, expressive et multi-modale. Ce stage de M2 s’inscrit dans une collaboration à long terme entre nos deux équipes sur le sujet de la compréhension, de l’analyse et de la diffusion des mises en scène de théâtre. Dans une première étape, nous cherchons à constituer un corpus de textes de théâtre alignés avec les captations vidéo de leurs mises en scène, qui sera mis à disposition de la communauté des chercheurs en sciences cognitives intéressés par le sujet de la communication théâtrale. Une première étude (Martinez 2023) a montré que les méthodes de reconnaissance vocales disponibles « sur étagère » étaient insuffisantes pour créer un tel corpus et que des approches plus spécifiques devaient être développées. C’est l’objet de ce stage. Le stage se déroulera dans les locaux de l’action exploratoire ITHEA d’Inria à Grenoble (MINATEC). En cas de succès, il pourra être suivi par une thèse de doctorat sur le même sujet, sous réserve d’obtention d’une allocation de recherche. Références :
Max Bain, Jaesung Huh, Tengda Han, Andrew Zisserman. WhisperX: Time-Accurate Speech Transcription of Long-Form Audio. INTERSPEECH 2023. Adela Barbulescu, Rémi Ronfard, Gérard Bailly. Characterization of Audiovisual Dramatic Attitudes. Interspeech 2016 - 17th Annual Conference of the International Speech Communication Association, Sep 2016. Chow and Brown. A Musical Approach to Speech Melody. Frontiers in Psychology, Section : Cognition, Volume 9, Article 247, March 2018. Katsalis, A. et al. (2023). NLP-Theatre: Employing Speech Recognition Technologies for Improving Accessibility and Augmenting the Theatrical Experience. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2022. Lecture Notes in Networks and Systems, vol 543. Springer, Cham. Emma Martinez. Conception d’un système de reconnaissance de la parole pour le théâtre. Mémoire de master Sciences du Langage, Univ. Grenoble Alpes. Sous la direction de Benjamin Lecouteux et Rémi Ronfard. Septembre 2023. Gabriele Sofia, « Mémoire phonique « incarnée » du théâtre. Prolégomènes d’une approche cognitive », Revue Sciences/Lettres [En ligne], 5 | 2017. Benjamin Lecouteux Full Professor in Computer Science UGA / LIG / GETALP team Phone: (+33)7 64 54 24 85
--
| |||||
6-12 | (2024-11-11) Stage sur l'annotation semi-automatique de conversations dans des documents audiovisuels, @ LISN, Orsay, France) Veuillez trouver ci-dessous l'offre de stage proposée par le LISN (à Orsay) sur l'annotation semi-automatique de conversations dans des documents audiovisuels.
Le stage pourra se poursuivre en thèse (financement ANR prévu).
Description: Most human interactions occur through spoken conversations. If this interaction mode seems so natural and easy for humans, it remains a challenge for spoken language processing models as conversational speech raises critical issues. First, non-verbal information can be essential to understand a message. For example a smiling face and a joyful voice can help detecting irony or humor in a message. Second, visual grounding between participants is often needed during a conversation to integrate posture and body gesture as well as references to the surrounding world. For example, a speaker can talk about an object on a table and refer to it as this object by designing it with her hand. Finally, semantic grounding between participants of a conversation to establish mutual knowledge is essential for communicating with each other. In this context, the MINERAL project aims to train a multimodal conversation representation model for communicative acts and to study communicative structures of audiovisual conversation. As part of this project, we are offering a 5- to 6-month internship focused on semi-automatic annotation of conversations in audio-visual documents. The intern's first task will be to extend the existing annotation ontology for dialog acts, currently available for audio documents (through the Switchboard corpus for example), to incorporate the visual modality. In a second step, the intern will develop an automatic process for transferring annotations to new audiovisual datasets (such as meeting videos and TV series or movies) using transfer or few-shot learning approaches. Practicalities: Starting between February and April 2025, the internship will be funded ~500 euros per month for a duration of 5 or 6 months and will take place at LISN (Orsay) within the LIPS team. This internship can potentially be followed by a funded PhD, based on performance and interest in continuing research in this area. Required Qualifications:
To apply, please send your CV, a cover letter and your M1 and M2 transcripts (if available) by email to Camille Guinaudeau camille.guinaudeau@universite-paris-saclay.fr and Sahar Ghannay sahar.ghannay@universite-paris-saclay.fr References: [Albanie, 2018] Samuel Albanie, Arsha Nagrani, Andrea Vedaldi, and Andrew Zisserman. Emotion Recognition in Speech using Cross-Modal Transfer in the Wild. In Proceedings of the 26th ACM international conference on Multimedia. 2018 [Fang, 2012] Alex C. Fang, Jing Cao, Harry Bunt and Xiaoyue Liu. The annotation of the Switchboard corpus with the new ISO standard for dialogue act analysis. Workshop on Interoperable Semantic Annotation. 2012.
| |||||
6-13 | (2024-11-13) Stage 6 mois, Université d'Avignon, FranceStage : 6 mois, 'Extraction d’informations sémantiques dans des transcriptions de résumés oraux d’histoires par des enfants'Université d' Avignon, LIA ** Informations générales Durée : 6 mois Début : à partir de janvier 2025, au plus tard avril 2025
| |||||
6-14 | (2024-11-15) Two fully funded PhD positions, INRIA, France Inria, the French national institute for research in digital science and
| |||||
6-15 | (2024-12-06) Deux offres de stage au sein du service de la recherche de l'Institut National de l'Audiovisuel (INA), Paris, France Deux offres de stage au sein du service de la recherche de l'Institut National de l'Audiovisuel, portant sur l'analyse de la parole (signal ou transcrite) avec une forte composante humanités numériques et machine learning.
Sujet 1: Description automatique des stéréotypes racistes et sexistes dans les contenus audiovisuels
https://www.ina.fr/hub-p/public/2024-12/stage_recherche_ina_2025_racisme_sexisme.pdf
Sujet 2: Détection de l'activité vocale dans des corpus audiovisuels à l'aide de représentations auto-supervisées
https://www.ina.fr/hub-p/public/2024-12/stage_recherche_ina_2025_vad.pdf
| |||||
6-16 | (2024-12-10) 12 positions for doctoral researchers: PSST! - Privacy for Smart Speech Technology PSST! - Privacy for Smart Speech Technology Call for applicants - PhD students (12 positions)
“Privacy for Smart Speech Technology” (PSST) is a joint doctoral training programme and Horizon Europe Marie Skłodowska-Curie Action, the European Union’s flagship funding programme for doctoral training. We are a consortium of 7 European universities and 11 industrial partners searching for 12 PhD students to work on the protection and evaluation of privacy for smart speech technology. PSST is a unique opportunity, as it is the largest international project focusing on privacy in speech technology and because the importance of privacy has only recently gained wider appreciation.
This is no ordinary PhD programme.
The structured PSST doctoral training programme combines training in cutting-edge research, transferable skills and career-enhancing skills with exposure to multiple sectors and disciplines.
Join us and put your expertise in deep learning / machine learning, speech processing, information privacy and security, and user studies into practice and gain your PhD degree from TWO leading European Universities (listed below)!
See more information and PhD topics at https://psst-doctoralnetwork.eu/
We are looking for 12 PhD candidates who hold a master's degree. We value diversity and plan to hire 12 fellows with a balanced background and skillset, and an excellent academic track record. We especially encourage applications from members of under-represented groups.
10.12.2024 Call opens
26.1.2025 Application deadline
28.2.2025 Shortlisted candidates informed
17.-18.3.2025 Recruitment event in Finland for shortlisted candidates
May 2025 Notification of acceptance
August 2025 Planned start of employment
PSST follows a double-degree model whereby, during their 45-month employment, each PhD student will work in collaboration with two universities towards PhD degrees from both institutions! Each PhD student will also spend 6 months on secondment to one of our Associate Partners, all leading European SMEs, large industrials or regulatory bodies active in speech privacy:. - CNIL (France), ELDA (France), ki:elements (Germany), Loihde (Finland), Naver (France), Omilia (Greece), Orange (France), Vocapia (France), VoiceInteraction (Portugal), Voice INTER connect (Germany), and VoiceMod (Spain).
Applications should include:
- Curriculum Vitae (including countries of residence in the past 36 months).
- Academic transcripts for completed courses and degrees.
- Motivation letter explaining why you want to pursue a PhD degree and why you believe you are an outstanding candidate to pursue your PhD researching PSST topics.
- Reference letter from Master’s thesis supervisor/advisor or similar.
- (Optional) Preferences for 1-3 research topics (see webpage) and universities.
Requirements
- A master's degree in electrical engineering, computer science or related area (degree must be completed before employment can start).
- Mobility: The fellow must not have resided or carried out their main activity (work, studies, etc.) in the country of the first recruiting organisation for more than 12 months in the 36 months immediately before their recruitment date.
- Fluent written and verbal communication skills in English are required, knowledge of the local language is an advantage.
- Candidates cannot hold a doctoral degree.
Desirable skills
- Knowledge and skills in deep learning, programming, speech processing, user studies, privacy.
- Ability to work independently and a critical mindset.
- Pro-activeness and eagerness to participate in network-wide training events, international mobility, and public dissemination activities.
Submit your application at https://www.aalto.fi/en/open-positions/doctoral-researchers-12-positions-privacy-for-smart-speech-technology-psst
PhD students receive a regular salary and social benefits according to national regulations, and if applicable, also family leave, long-term leave, and special needs allowances. The gross salaries we offer, including both a living allowance and a mobility allowance, are
3500 €/month Aalto University (Espoo, Finland)
3261 €/month EURECOM (Sophia Antipolis, France) [1]
2680 €/month INESC-ID (Lisbon, Portugal) [2]
3261 €/month INRIA (Nancy or Saclay, France) [1]
Salary group TV-L E13 Ruhr University Bochum (Germany) [3]
Salary scale P Radboud University Nijmegen (Netherlands) [4]
Salary group TV-L E13 Technical University of Berlin (Germany) [3]
[1] https://www.horizon-europe.gouv.fr/sites/default/files/2022-02/horizon-europe---dn-pf---french-salary-explained-5762.pdf
[2] includes: base salary + food allowance + holiday allowance
[3] https://oeffentlicher-dienst.info/c/t/rechner/tv-l/allg?id=tv-l-2024&g=E_13&s=1
[4] https://www.ru.nl/sites/default/files/2024-09/Overview%20salary%20scales%201%20sept%202024.pdf
For queries, contact info@psst-doctoralnetwork.eu .
Marie Skłodowska-Curie Actions, Doctoral Networks (MSCA-DN) , 101168193 – PSST.
| |||||
6-17 | (2024-12-13) Doctoral training program “Privacy for Smart Speech Technology” (PSST) is a joint doctoral
| |||||
6-18 | (2024-12-13) Stage IRCAM/CNRS/EURECOM Génération de deepfakes audio-visuels par modèle de diffusion multimodal Dates : 01/03/2025 au 31/08/2025 Laboratoire : STMS Lab (IRCAM / CNRS / Sorbonne Université et EURECOM Lieu : IRCAM – Analyse et Synthèse des Sons (Paris) ou EURECOM (Sophia Antipolis) Responsables : Nicolas Obin (Ircam), Jean-Luc Dugelay (EURECOM), Alexandre Libourel (EURECOM) Contact : nicolas.obin@ircam.fr, Jean-Luc.Dugelay@eurecom.fr, Alexandre.Libourel@eurecom.fr Contexte : Ce stage s’inscrit dans le contexte du projet DeTOX - Lutte contre les vidéos hyper-truquées de personnalités françaises, financé par ASTRID/ANR et en collaboration avec EURECOM. Les récents challenges ont montré qu’il était extrêmement difficile de mettre au point des détecteurs universels de vidéos hyper-truquées - à l’exemple des “deep fakes” utilisés pour contrefaire l’identité d’une personne. Lorsque les détecteurs sont exposés à des vidéos générées par un algorithme nouveau, c’est-à-dire inconnu lors de la phase d’apprentissage, les performances sont encore extrêmement limitées. Pour la partie vidéo, les algorithmes examinent les images une par une, sans tenir compte de l’évolution de la dynamique faciale au cours du temps. Pour la partie vocale, la voix est générée de manière indépendante de la vidéo ; en particulier, la synchronisation audio-vidéo entre la voix et les mouvements des lèvres n’est pas prise en compte. Ceci constitue un point faible important des algorithmes de génération de vidéos hyper-truquées. Le projet DeTOX vise à implémenter et à apprendre des algorithmes de détection de deepfakes personnalisés sur des individus pour lesquels on peut disposer et/ou fabriquer de nombreuses séquences audio-vidéo réelles et falsifiées. En se basant sur des briques technologiques de base en audio et vidéo récupérées de l’état de l’art, le projet se concentrera sur la prise en compte de l’évolution temporelle des signaux audio-visuels et de leur cohérence pour la génération et la détection. Nous souhaitons ainsi démontrer qu’en utilisant simultanément l’audio et la vidéo et en se focalisant sur une personne précise lors de l’apprentissage et de la détection, il est possible de concevoir des détecteurs efficaces même face à des générateurs encore non répertoriés. De tels outils permettront de scruter et de détecter sur le web d’éventuelles vidéos hyper-truquées de personnalités françaises importantes (président de la république, journalistes, chef d’état-major des armées, …) et ce dès leur publication. Objectifs : La génération deepfakes audio-visuels repose actuellement sur l’assemblage de deepfakes audio, visuel, et de resynchronisation labiale générés séparément. Chaque modalité possède des générateurs de référence dans l’état de l’art : par exemple, LIA [1, 2] ou DeepFaceLab pour l’image, RVC [3] pour l’audio, et Wav2lip et Diff2lip [4] pour la synchronisation labiale audio-visuelle. L’objectif de ce stage consistera à implémenter, entraîner, et évaluer un modèle de génération de deepfakes audio-visuel par diffusion multimodale à partir de générateurs existants et optimisée sur une personnalité visée. Les contributions attendues sont : - L’implémentation d’un post-net basé sur un modèle de diffusion à partir de flux de données asynchrones qui, à partir d’un assemblage de générateurs séparés, homogénéise et optimise le réalisme du rendu de la génération d’un deepfake audio-visuel - La spécialisation de la génération conditionnée sur l’identité d’une personnalité, par exemple par la mise en œuvre d’un apprentissage adversarial conditionné sur la personne. - La génération d’une base de données de deepfakes audio-visuel sur une ou plusieurs personnalités françaises. - La mise en œuvre de protocoles d’évaluation objectif et subjectif pour l’évaluation de la qualité et du réalisme des deepfakes générés
Le stage s’appuiera en majeure partie sur les connaissances de l’équipe Analyse et Synthèse des Sons en traitement du signal de parole et en modélisation générative par réseaux de neurones, en collaboration étroite avec EURECOM pour la génération multimodale. En outre, le ou la stagiaire pourra s’appuyer sur les implémentations existantes des générateurs audio, visuel, et de synchronisation labiale déjà réalisées dans le cadre du projet DeTOX. Compétences attendues : ● Maîtrise de l’apprentissage automatique, en particulier de l’apprentissage par réseaux de neurones, et multimodal. ● Maîtrise du traitement du signal numérique (son, image) ● Bonne maîtrise de la programmation Python et de l’environnement TensorFlow et PyTorch et du calcul distribué sur des unités GPUs ● Autonomie, travail en équipe, communication, productivité, rigueur et méthodologie. Rémunération : Gratification selon loi en vigueur et avantages sociaux
Date limite de candidature : 20/01/2025 Bibliographie : [1] Wang, Yaohui, Di Yang, Francois Bremond, and Antitza Dantcheva. 'LIA: Latent Image Animator.' IEEE Transactions on Pattern Analysis and Machine Intelligence (2024). [2] Wang, Y., Yang, D., Bremond, F. and Dantcheva, A., 2022. Latent image animator: Learning to animate images via latent space navigation. In International Conference on Learning Representation (ICLR), 2022. [3] Retrieval-based Voice Conversion. Available online: https://github.com/RVCProject/Retrieval-based-Voice-ConversionWebUI/blob/main/docs/en/README.en.md [4] Mukhopadhyay; S. et al. Diff2Lip: Audio Conditioned Diffusion Models for LipSynchronization. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 5292-5302. 2024
| |||||
6-19 | (2024-12-14) M2 Internship: Using Speech-Based AI to Study Communicative Development, @ LIS/CNRS, Marseille ( Luminy campus), France M2 Internship: Using Speech-Based AI to Study Communicative Development Requirement: M1 in computer science Large Language Models, such as ChatGPT, have shown impressive abilities in text-based tasks. Beyond practical applications, they have also sparked scientific discussions about the nature of human language and cognitive development, including debates around Chomsky’s theories on the emergence of syntax. 1 However, these models have limitations in advancing our understanding of how children acquire language. First, they rely on vast amounts of text data for training. Children do not acquire language through exposure to written text; their language learning is grounded in speech—an inherently multimodal signal that combines linguistic and paralinguistic information such as prosody. These features are understood to play a critical role in shaping children’s communicative development. 2 Second, children are not passive learners, they actively engage in (proto-)conversational exchanges with caregivers. Through interactions, they influence their linguistic environment, creating a dynamic feedback loop that is vital for learning. 3 Recent advances in speech language modeling provide a scientific infrastructure for the study of how multimodality and interaction shape early language development. Models like Moshi 4 represent a significant step forward by processing speech directly, without first converting it into text. This approach allows an effective integration of both linguistic and paralinguistic cues. Moshi also models interactive speech communication, enabling it to listen and respond simultaneously—just as humans do. This project aims to use such speech-based models to study children’s communicative development in unprecedented ways, addressing questions about how early conversational dynamics, prosody, and meaning interact to support language acquisition and use. Beyond its scientific contributions, this work has significant societal implications. In education, it can guide the development of more engaging, low-latency e-tutoring systems. In health, it can improve the accuracy of tools for early detection of communicative disorders, such as autism, through analysis of markers like turn-taking dynamics and prosody. The internship will focus on the Generative Spoken Language Model (dGSLM), 5 a direct precursor to Moshi. dGSLM is well-suited for an M2 internship due to its relative simplicity, while still being capable of producing significant scientific results. The main components of dGSLM include (see Figure, extracted from the original paper): ● Encoder: HuBERT, a self-supervised speech model that encodes linguistic and paralinguistic features from raw audio ● Decoder: HiFi-GAN, a vocoder for generating realistic audio. ● Model Architecture: Duplex transformer, which supports bidirectional processing of conversational dynamics. We will fine-tune dGSLM on around 150 hours of child-adult conversations from a new corpus, which includes data from 303 children aged 4 to 9 years. This fine-tuning will adapt the model to study child-directed communication. In particular, we will explore how prosody influences turn-taking dynamics, employing methods analogous to those we use to study children’s behavior in the lab. Practicalities The internship will be funded ~600 euros per month for a duration of 5 to 6 months. It will take place in Marseille within the TALEP research group at LIS/CNRS on the Luminy campus. The intern will collaborate with other interns from this project, as well as PhD students and researchers from the research group. How to apply: send as soon as possible a short application letter, transcripts, and CV to abdellah.fourtassi@gmail.com ● Application deadline: December 20th, 2024 ● Expected start: February 2025 6
1 Piantadosi, S. T. (2023). Modern language models refute Chomsky’s approach to language. From fieldwork to linguistic theory: A tribute to Dan Everett, 353-414. 2 Christophe, A., Millotte, S., Bernal, S., & Lidz, J. (2008). Bootstrapping lexical and syntactic acquisition. Language and speech, 51(1-2), 61-75. 3 Murray, L., & Trevarthen, C. (1986). The infant's role in mother–infant communications. Journal of child language, 13(1), 15-29. 4 Défossez, A., Mazaré, L., Orsini, M., Royer, A., Pérez, P., Jégou, H., ... & Zeghidour, N. (2024). Moshi: a speech-text foundation model for real-time dialogue. arXiv preprint arXiv:2410.00037. 5 Nguyen, T. A., Kharitonov, E., Copet, J., Adi, Y., Hsu, W. N., Elkahky, A., ... & Dupoux, E. (2023). Generative spoken dialogue language modeling. Transactions of the Association for Computational Linguistics, 11, 250-266. 6 Ekstedt, E., & Skantze, G. (2022). How much does prosody help turn-taking? investigations using voice activity projection models. arXiv preprint arXiv:2209.05161.
| |||||
6-20 | (2024-12-18) Stages à lRIT (équipe SAMoVA), Toulouse, France L’équipe SAMoVA de l’IRIT à Toulouse propose plusieurs stages (M1, M2, PFE ingénieur) en 2025 autour des thématiques suivantes (liste non exhaustive) :
https://www.irit.fr/SAMOVA/site/jobs/
| |||||
6-21 | (2025-02-04) Jobs à Nancy, France 4 postes de maîtres de conférences et 2 postes de professeurs en informatique sont ouverts à l’Université de Lorraine avec une affectation recherche au LORIA (www.loria.fr). Les candidats et candidates doivent impérativement prendre contact avec les responsables des équipes du laboratoire et les composantes d’enseignement.
— 2 postes PR à l’école des Mines de Nancy et à l'IUT Charlemagne (Nancy). En recherche, ouverts au recrutement dans toutes les équipes du LORIA. En enseignement, profilés robotique - CPS à l’école des Mines et profilé pour le département MMI à l’IUT Charlemagne.
— 2 postes MCF ouverts en recherche au recrutement dans toutes les équipes des départements D1 « Algorithmique, calcul, image et géométrie », D2 « Méthodes formelles » et D3 « Réseaux, systèmes et services » au LORIA.
Pour l'enseignement : 1 affectation à la Faculté des Sciences et Technologie (Nancy) avec un profil ouvert (Programmation, Algorithmique, Mathématiques Discrètes, Web, Réseaux, Génie Logiciel, Bases de Données) ; 1 affectation à Telecom Nancy profilée sur les domaines des systèmes connectés et du génie logiciel (Systèmes connectés, systèmes distribués, génie logiciel, programmation système, développement logiciel, cybersécurité, cloud).
— 2 postes MCF ouverts en recherche au recrutement dans toutes les équipes des départements D3 « Réseaux, systèmes et services », D4 « Traitement automatique des langues et des connaissances » et D5 « Systèmes complexes, intelligence artificielle et robotique » au LORIA.
Pour l'enseignement : 1 affectation à l’IDMC (Nancy) profilée pour la formation MIAGE (Informatique, BD, SI, SI distribué, big data, cloud, BI). 1 affectation à l’IUT de Metz profilée sur le parcours Réalisation d’applications (Développement d’applications, Programmation système).
Plus d'informations sur https://www.loria.fr/fr/emplois/
| |||||
6-22 | (2025-02-04) Several 3-year PhD positions @LIA, Avignon, France Several fully funded three-year PhD positions are opened with LIA's Speech and Language Group, at Avignon University.
| |||||
6-23 | (2025-02-10) Post-doc and PhD at the Medical University of Vienna, Austria Positions Announcement The Speech and Hearing Science Lab (SHS Lab) at the Medical University of Vienna and the Signal Processing and Speech Communication Lab (SPSC Lab) at Graz University of Technology are jointly seeking candidates for: · 1 PhD Candidate · 1 Postdoctoral Researcher Both positions focus on speech processing in digital health and are expected to start on April 1st, 2025. The selected candidates will work on voice conversion for speech pathologies, with applications in (i) disease progression modeling, including treatment effect prediction, and (ii) enhancing pathological speech using a speaking aid. Key Research Areas & Methodologies · Speech processing · Voice conversion · Speech analysis & synthesis · Speaker embeddings · Representation learning · Deep neural networks · Natural language processing (NLP) · Artificial intelligence & machine learning (AI/ML) Qualifications PhD Candidate · M.Sc. degree in a relevant field (Electrical Engineering, Computer Science, Information & Computer Engineering, Electrical Engineering & Audio Engineering). · Experience in speech processing, preferably in voice conversion. Postdoctoral Researcher · PhD degree in a relevant field (related to speech processing). · Research publications in voice conversion. General Requirements (All Candidates) · Independent, self-motivated work ethic. · Strong teamwork skills. · Excellent communication abilities. · Fluency in English (C1 level); German is an asset. · Willingness and eligibility to work in Graz and Vienna. · Willingness and eligibility to travel internationally, including to the USA and Asia for conferences. About the Institutions The SHS Lab focuses on engineering sciences for communication disorders, integrating speech signal processing, medical data science, AI/ML, medical imaging, and biomarkers. The lab is affiliated with the Department of Otorhinolaryngology and the Division of Phoniatrics-Logopedics. MedUni Vienna is one of Europe’s leading medical universities, affiliated with Vienna General Hospital, the largest hospital in Europe. It actively advances AI and machine learning research through its newly founded “Comprehensive Centre for AI in Medicine” and is expanding with major new facilities, including the Centre for Translational Medicine (2025) and the Eric Kandel Centre for Precision Medicine (2026). The SPSC Lab conducts research and teaching in speech processing, audio engineering, signal processing, computational intelligence, and circuits & systems modeling. It has played a key role in organizing INTERSPEECH 2019 and is leading the development of the Graduate School of Speech Language and AI Technologies within the Unite! University Alliance. TU Graz is Austria’s oldest technical university, known for its high-impact research, student innovation, and vibrant startup ecosystem. It provides an inspiring work environment with excellent infrastructure and university support. Diversity & Inclusion Austrian universities are committed to increasing female representation, particularly in scientific and leadership roles. Qualified female candidates are strongly encouraged to apply. In case of equal qualifications, preference will be given to female applicants. Compensation & Benefits · PhD Candidate: €37,577.40 (annual gross, 75% position). · Postdoctoral Researcher: €49,899.15 (annual gross, 75% position). How to Apply Send your application (including CV, motivation letter, transcript of records, at least two references, MSc/PhD thesis, and relevant publications) to: 📧 philipp.aichinger@meduniwien.ac.at and hagmueller@tugraz.at 📅 Applications will be accepted until the positions are filled.
| |||||
6-24 | (2025-02-10) Post doc and Research engineers positions at University of Marburg, Germany For my new research group “AI – Multimodal Modelling and Learning” at the University of Marburg (in collaboration with hessian.AI, the Hessian Center for Artificial Intelligence), I am seeking candidates for the position of a
1 Postdoc (max. 4+2 years) 2 Research Software Engineer (initially 2.5 years)
Position 1: Postdoc (official job advertisement here: https://stellenangebote.uni-marburg.de/jobposting/283d40458a3570725bf80921a88ec09a44400883)
The position is offered for a period of 4 years (with the option for a 2-year extension upon successful evaluation), if no former times of qualification must be considered. The earliest starting date is April 1, 2025. The position is fulltime with salary and benefits commensurate with a public service position in the state Hesse, Germany (TV-H E 13, 100 %).
Your tasks: - Research and development of novel AI methods in the topic areas listed below (see „Your qualification“) - Publication of research results in high-ranked international venues (A*/A/Q1) - Acquisition of third-party funds for research projects (both in contributing and independent roles) - Co-supervision of students and PhD students - Teaching (lectures and/or seminars) - Optional: Setting up your own junior research group
Your qualification: - Completed university degree (Diploma, Master‘s or equivalent) in Computer Science - Very good doctorate or evidence of being in the final stages of doctoral completion - Demonstrated expertise in one or more of the following areas: computer vision, machine learning, multimodal computing, information retrieval, human-centered AI, semantic web, visual analytics - Optional expertise in one of the following application domains: social media and disinformation, technology-enhanced learning, learning analytics, cognitive science, medical informatics, digital humanities - Publications in internationally renowned computer science venues in at least one of the above-mentioned areas - Excellent programming skills in common programming languages (Python, Java, etc.), experience with machine learning libraries - Experience in supervising student theses and collaboration in joint publications
Position 2: Research Software Engineer (with Master or PhD degree)
This position has a focus on research software engineering and is offered for a period of 2.5 years (until September 30, 2027), subject to approval of funds. It is a fulltime position with salary and benefits commensurate with a public service position in the state Hesse, Germany (TV-H E 13, 100 %).
The position is part of the project „SportVid: A Portal for Supporting Search, Analysis and Evaluation of Videos in Sports and Training Science“, funded by the German Research Foundation (DFG) within the program „Scientific Library Services and Information Systems“ (LIS).
The project focuses on developing innovative solutions for the analysis of and search in training and sports videos. The project is a collaboration with the German Sport University Cologne (DSHS) and the Central Library of Sports Sciences (ZBS).
Your tasks: - Implementation of state-of-the-art AI methods for video analysis (e.g. shot boundary detection, camera settings and movement detection), research and review current scientific literature - Implementation of state-of-the-art AI methods for sports video analysis (e.g. pose detection, recognition of sport-specific actions, sports field registration) - Implementation of current methods for search and retrieval of training and sports videos - Integration of developed software components into the web-based video analysis platform SportVid - Development of infrastructure, frontend and backend functionalities using modern web frameworks - Preparation of / collaboration on scientific publications
The position, subject to approval of funds, is temporary according to § 2, 2 WissZeitVG.
Your qualification: - Completed university degree (Master‘s or equivalent) in a relevant field such as computer science, mathematics, or a comparable degree in a related discipline - Strong programming skills, excellent knowledge of one or more modern programming languages (particularly Python, JavaScript), modern web technologies and databases - Strong knowledge of machine learning methods (particularly deep learning), ideally in computer vision, alternatively natural language processing or information retrieval - Experience with deep learning frameworks (PyTorch, TensorFlow) - Experience with web application development - Excellent command of written and spoken English
What we offer (both positions) - Oustanding career development opportunities, e.g. towards becoming a research software engineer, mentoring and support for planning your professional career, support with grant applications - An excellent and dynamically evolving research environment in the Department of Mathematics and Computer Science, including three newly established AI professorships - Connection to hessian.AI (Hessian Center for Artificial Intelligence) with exceptional collaboration opportunities and high-performance computing resources for training large-scale AI models - An excellent international and national research network (including connections to various institutes of the Leibniz Association and Fraunhofer Society) - Funding for conference participation - Hessian public transport ticket (Landesticket Hessen)
How to apply: For position 1, please apply here: https://stellenangebote.uni-marburg.de/en/jobposting/283d40458a3570725bf80921a88ec09a444008830/apply
For position 2: Official application process is not available yet; if you would like to indicate your interest in the position, please send your CV to Prof. Ralph Ewerth (address below).
Contact If you have any questions, please write to: Prof. Dr. Ralph Ewerth rewerth@informatik.uni-marburg.de
| |||||
6-25 | (2025-02-12) PhD position in neurocognition of language, Université de Lille (France) & Radboud University/Donders Institute (The Netherlands) We invite applications for a PhD position in neurocognition of language. The aim of the project is to better understand the interplay between language comprehension and production by studying neurocognitive mechanisms in typical and neurological adult populations. The PhD student will be co-supervised by Anahita Basirat (Lille, France) and Vitória Piai (Nijmegen, Netherlands). The planned start date is 1 October 2025. The application deadline is 28 March 2025.
| |||||
6-26 | (2025-02-15) Full-time Postdoctoral position in Linguistics/Speech Therapy at Silesian University of Technology, Poland Full-time Postdoctoral position in Linguistics/Speech Therapy at Silesian University of Technology, Poland
We offer a full-time post-doc research position in the 'Longitudinal investigation of sibilant articulation development in children: a statistical modeling approach based on instrumental evidence and data mining methods' project funded by National Science Center, Poland. The project aims to develop a statistical model describing the nature and rate of change in improving sibilant articulation based on parameters determined from speech audio and video recordings of preschool children's faces. The project is led by Principal Investigator Zuzanna Miodońska, PhD.
The employment at the Silesian University of Technology, Poland, will last 12 months and may be renewed up to a maximum of 36 months. The planned monthly salary is around 8800 PLN gross.
The post-doc is expected to execute the following tasks:
1. Participation in developing the articulation study protocol and measurement station; participation in developing language material from the perspective of phonetic analysis and data mining methods.
2. Participation in preparing and conducting multimodal data registration in a group of preschool children, segmentation, and description of data.
3. Development of guidelines for acoustic and phonetic data analysis, development and conducting speech signal analysis protocols,description of articulation patterns occurring in the study group.
4. Participation in designing and verifying models describing the collected data, interpretation and description of results.
5. Preparation of reports and publications.
Requirements:
1) a doctoral degree in the discipline of linguistics or related, obtained in the year of employment in the project or in the period of 7 years before 1 January of the year of employment in the project. This period may be extended by the time spent on long-term (over 90 days) documented sickness or rehabilitation periods or by the number of months spent on leave related to the care and upbringing of children.
2) experience and knowledge in the field of research on speech development and articulation in children, language acquisition, phonetics and phonology of the Polish language; experience in the field of recording, describing and analyzing articulation data and speech signal is welcome, as well as previous contact with statistical modeling methods in linguistics.
3) scientific experience in conducting research in the discipline of linguistics or biomedical engineering or a related discipline, confirmed by co-authorship/authorship of peer-reviewed publications and presentations at scientific conferences;
4) knowledge of English in speech and writing, allowing for the preparation of scientific publications,
5) in the case of foreigners, fluent knowledge of Polish in speech and writing,
6) due to the duties in the project, necessary experience and predispositions to work with children, as well as meeting the legal requirements for working with children.
Application submission:
Please send an email to zuzanna.miodonska@polsl.pl with the following documents:
1. Curriculum vitae detailing scientific achievements, in particular a list of publications, research projects, professional experience, and other information relevant to the project. In the CV, please include a statement about your level of English and Polish and the clause 'I consent to the processing of my personal data by the Silesian University of Technology to conduct recruitment for the position I have applied for.'
2. Cover letter.
3. Opinion about the applicant prepared by the head of the research team, the supervisor of the doctoral thesis, or the head of the department/faculty/institute where the applicant works or worked.
4. Copies of the three most important publications (co-)authored by the person applying for employment (in the case of multi-authored works, a description of the applicant's contribution should be included).
If you have any questions concerning the project or employment, you are welcome to contact us by email at zuzanna.miodonska@polsl.pl.
| |||||
6-27 | (2025-02-20) Associate/Assistant Professor position @ Radboud University in Nijmegen, The NetherlandsA truly interesting job opportunity: At Radboud University in Nijmegen, NL, we will be hiring an Associate/Assistant Professor: Language and Speech Technology. Applications welcome until 16 March! See for more information https://lnkd.in/eJGVmAXH
| |||||
6-28 | (2025-02-21) Academic positions at LS2N, Nantes Université, France Le LS2N (Laboratoire des Sciences du Numérique de Nantes) de Nantes Université ouvre plusieurs postes de MCF et un poste de PR en 2025. Les profils détaillés de ces postes sont disponibles sur le site de Nantes Université (https://www.univ-nantes.fr/universite/recrutement/campagne-synchronisee-ec-2024-recrutement-de-60-enseignants-chercheurs) ou directement sur la plateforme Odyssée (https://odyssee.enseignementsup-recherche.gouv.fr).
Parmi ces postes, une intégration est possible dans l'équipe TALN (Traitement Automatique du Langage Naturel) :
- MCF 27 - Polytech Nantes
- MCF 27 art29-BOE - IUT Nantes - Département Informatique
- PR 27 - Faculté des Sciences et Techniques - Département Informatique
Les contacts pour chaque poste ainsi que les profils d'enseignement sont disponibles sur chacune des fiches.
Ne pas hésiter à me contacter pour toute information concernant une intégration dans l'équipe TALN.
Plus d’informations sur l’équipe TALN sont disponibles ici : http://taln.ls2n.fr
| |||||
6-29 | (2025-02-23) Poste de maître de conférences en Intelligence Artificielle pour les Sciences Humaines et Sociales, Sorbonne, Paris, France Le poste requiert un haut niveau d’excellence scientifique en Intelligence Artificielle Générative et Analytique pour les sciences humaines et sociales et des compétences reconnues sur la création et l’utilisation des grands modèles de langage (LLM). Différents champs d’applications en sciences humaines et sociales sont privilégiés comme l’ingénierie et modélisation des connaissances et le traitement automatique de la parole/du langage. L’intérêt porté aux applications de l’Intelligence Artificielles aux sciences humaines et sociales constitue une des spécificités de l’enseignement de l’Informatique à la faculté des lettres de Sorbonne Université. Le candidat enseignera l’Informatique et l’Intelligence Artificielle dans les différentes formations de licence (sciences du langage option informatique et Intelligence Artificielle) et de master (Langue et Informatique) du département d’Informatique, Mathématiques et de Linguistique appliquées ainsi qu’en Pix (compétences numériques) pour les étudiants de la faculté des lettres. Recherche Recherche : claude.montacie@sorbonne-universite.fr
| |||||
6-30 | (2025-02-25) Post-doc @ 52-Herz, France La jeune start up française 52-Herz collaborant avec l'INRIA & L'IFREMER pour développer un appareil de communication sous-marin pour plongeur recrute un post doc pour travailler sur le traitement de la déformation de la parole du plongeur dans l'eau. Elle dispose d' une puissance de calcu lembarquée pour tenter de faire cela et travaille sur le débruitage mais également sur la récupération des effets de plosion.
Voici l'offre de post-doc INRIA : https://jobs.inria.fr/public/classic/fr/offres/2025-08624
A noter que la fin des candidatures est le 31/03.
| |||||
6-31 | (2025-03-01) Proposition de thèse financée (ANR FRENCHMELO), Aix-Marseille, France Proposition de thèse financée (ANR FRENCHMELO) Contact : Amandine Michelas [amandine.michelas@univ-amu.fr] et Sophie Dufour [sophie.dufour@univ-amu.fr] Lieu : Laboratoire Parole et Langage (LPL, CNRS et Aix-Marseille Université) Candidature jusqu’au 30 avril 2025 (envoyer CV).
Titre : Le bilinguisme : un atout pour le traitement de l’accentuation ? Proposition : Il est bien connu que les francophones natifs ont des difficultés à discriminer deux mots qui diffèrent par la position de l’accent (comme les mots espagnols bebé « bébé » et bébe «il/elle boit »). L’objectif de cette thèse sera de mieux comprendre ces difficultés par le biais du bilinguisme. En particulier, nous examinerons l’impact de l’acquisition d’une langue à accent lexical soit en première langue (ex. bilingues espagnol-français) soit en langue seconde (ex. bilingues français-espagnol) sur la capacité des auditeurs à traiter des différences d’accent. D’un point de vue sociétal, cette thèse permettra de mieux comprendre les difficultés que rencontrent les francophones natifs lorsqu’ils apprennent des langues étrangères et aura ainsi des implications pour l’enseignement des langues.
| |||||
6-32 | (2025-03-02) Post-doc position, University of Geneva, Switzerland
| |||||
6-33 | (2025-03-04) Poste de maitre de conferences au LABRI, Bordeaux, France Le Laboratoire Bordelais de Recherche en Informatique (LaBRI) ouvre un poste de MCF dans l'équipe Traitement et Analyse de Données (TAD) du département Image et Son (I&S) au LaBRI. Pour toute information complémentaire, contacter Jean-Luc Rouas, www.labri.fr/~rouas
| |||||
6-34 | (2025-03-05) Poste de MCF en psychologie du langage et neurocognition, Université de Lille, France Un poste de MCF en psychologie du langage et neurocognition est ouvert à l’Université de Lille :
| |||||
6-35 | (2025-03-10) Post-doc Researcher @ University of Marburg, GermanyFor my new research group “AI – Multimodal Modelling and Learning” at the University of Marburg (in collaboration with hessian.AI, the Hessian Center for Artificial Intelligence), I am offering a position (4+2 years) for a Postdoctoral Researcher (official job advertisement here: https://stellenangebote.uni-marburg.de/jobposting/283d40458a3570725bf80921a88ec09a44400883) The position is offered for a period of 4 years (with the option for a 2-year extension upon successful evaluation), if no former times of qualification must be considered. The earliest starting date is April 1, 2025. The position is fulltime with salary and benefits commensurate with a public service position in the state Hesse, Germany (TV-H E 13, 100 %). Your tasks: - Research and development of novel AI methods in the topic areas listed below (see „Your qualification“) - Publication of research results in high-ranked international venues (A*/A/Q1) - Acquisition of third-party funds for research projects (both in contributing and independent roles) - Co-supervision of students and PhD students - Teaching (lectures and/or seminars) - Optional: Setting up your own junior research group Your qualification: - Completed university degree (Diploma, Master‘s or equivalent) in Computer Science - Very good doctorate or evidence of being in the final stages of doctoral completion - Demonstrated expertise in one or more of the following areas: computer vision, machine learning, multimodal computing, information retrieval, human-centered AI, semantic web, visual analytics - Optional expertise in one of the following application domains: social media and disinformation, technology-enhanced learning, learning analytics, cognitive science, medical informatics, digital humanities - Publications in internationally renowned computer science venues in at least one of the above-mentioned areas - Excellent programming skills in common programming languages (Python, Java, etc.), experience with machine learning libraries - Experience in supervising student theses and collaboration in joint publications What we offer - Oustanding career development opportunities, e.g. towards becoming a research software engineer, mentoring and support for planning your professional career, support with grant applications - An excellent and dynamically evolving research environment in the Department of Mathematics and Computer Science, including three newly established AI professorships - Connection to hessian.AI (Hessian Center for Artificial Intelligence) with exceptional collaboration opportunities and high-performance computing resources for training large-scale AI models - An excellent international and national research network (including connections to various institutes of the Leibniz Association and Fraunhofer Society) - Funding for conference participation - Hessian public transport ticket (Landesticket Hessen) How to apply: Please apply here: https://stellenangebote.uni-marburg.de/en/jobposting/283d40458a3570725bf80921a88ec09a444008830/apply Contact If you have any questions, please write to: Please *do not send applications via e-mail*. Prof. Dr. Ralph Ewerth rewerth@informatik.uni-marburg.de
| |||||
6-36 | (2025-03-10) Research Scientist/Postdoc at the School of Computer Science at Carnegie Mellon University, Pittsburg, PA, USAResearch Scientist/Postdoc at the School of Computer Science at Carnegie Mellon University: We are looking for a highly motivated and talented research scientist/postdoc candidate in multimodal human behavior modeling in real-world contexts and applications. We are looking for candidates with strong ML and CV expertise and that are excited to expand their experiences to topics related AI for Healthcare. The ideal candidates must have a PhD in Computer Science or related fields and strong track record of publications in the top ranked ML/CV venues. Location: Carnegie Mellon University. Work type: Full time. Anticipated Start Date: Now. Position Duration: 1-2 years. Initial contract is for one year. Second year contract is based on performance. Application: If interested, please submit a single PDF file titled FirstNameLastName.pdf, including: 1- A brief letter of application, describing your qualifications and relevant experience to the position of interest (with expected date of availability), 2- A detailed CV including a list of publications and two recent representative publications, 3- Three reference letters (sent separately by the referees). Please visit the job details page for more information and submit the one single PDF file with all requested information (Points 1-3): https://cmu.wd5.myworkdayjobs.com/en-US/CMU/job/ROB---HAMMAL---Postdoctoral-Fellow_2022833 Thank you Zakia Hammal
| |||||
6-37 | (2025-03-31) PhD position at INRIA, France Inria, the French national institute for research in digital science and
| |||||
6-38 | (2025-03-31) 3 PhD positions @ EURECOM, Sophia Antipolis, France 3 PhD positions in speech deepfake detection and automatic speaker verification at EURECOM
| |||||
6-39 | (2025-04-01) Poste de doctorant, Université de Leiden, Pays-BasNous avons ouvert à Leiden(LUCL) un poste de doctorant.e en linguistique française quicommencera en septembre 2025, pour travailler sur la phonologie/phonétique de créoles à base française. Avec Jenny Doetjes, nous cherchons des candidat.es francophones, avec un master en linguistique, idéalement en phonologie/phonétique, et qui seraient aussi capables d'enseigner dans le département de français (langue, linguistique). Est-ce que vous pensez que cela pourrait intéresser vos étudiant.es ? La date limite pour postuler est le 31 mars (donc très bientôt), mais nous allons demander une extension donc il devrait y avoir un peu plus de temps. L'annonce se trouve ici : https://www.universiteitleiden.nl/vacatures/2025-nl/q1/15526phd-candidate-in-french-linguistic
| |||||
6-40 | (2025-04-02) Position doctorale à l'Université de Bretagne Occidentale, Brest, France Appel à candidature pour un contrat doctoral (3 ans à partir du 1er Octobre 2025)
Lieu
Université de Bretagne Occidentale (Brest)
Laboratoire de Traitement de l'Information Médicale (LaTIM - UMR 1101)
ED Sciences de la Vie et de la Santé Intitulé (titre provisoire)
Détection de paramètres prosodiques et lexicaux prédictifs de synchronisation au cours des interactions entre thérapeute et patient-enfant (TSA) dans le cadre des thérapies d’échange et de développement (TED). Mots clefs : lexique - phonologie - synchronisation - trouble du spectre de l'autisme (TSA)
Contexte
Les troubles du spectre autistique (TSA) touchent un enfant sur 100 dans le monde (Zeidan et al., 2022). Ces atteintes neurodéveloppementales se caractérisent par un certain degré de difficulté dans les interactions sociales et la communication. L'hétérogénéité des TSA exige donc des stratégies thérapeutiques personnalisées et adaptables. Les progrès réalisés dans la compréhension des TSA ont mis en évidence l'importance d'une intervention précoce, essentielle pour améliorer les compétences sociales et communicationnelles à long terme des personnes atteintes. Malgré la variabilité des interventions précoces proposées, l'objectif principal des cliniciens est la synchronisation avec les interlocuteurs (par exemple, par contacts visuels) et la recherche de facteurs prédictifs de cette synchronisation représente un enjeu majeur dans la prise en soin précoce (Lord et al., 2022).
La Thérapie d'Échange et de Développement (TED) a été mise au point au CHU de Tours dans les années 1980 (Barthélémy, Hameury & Lelord, 1995) pour réhabiliter les fonctions sous-tendues par les systèmes cérébraux de la communication sociale (attention à l'autre, intention, imitation, etc). Cette thérapie rééducative s'effectue dans le cadre de séances ludiques, adaptées au profil de développement de l'enfant et est particulièrement indiquée avant l’âge de quatre ans, période de plasticité cérébrale maximale. L'objectif principal de ces séances est de provoquer des synchronisations entre les patients et eux-mêmes (contacts visuels, imitations et gestes ajustés). Une étude longitudinale portant sur des enfants avec TSA, dont la TED était l’élément majeur du projet thérapeutique, a montré une amélioration des capacités d'échange et de communication en contexte d'autisme sévère associé à un retard de développement (Blanc et al., 2013).
Les changements induits par la TED (comportement, développement, fonctionnement) sont régulièrement mesurés par le biais de l’échelle Behavior Summarized Evaluation (évaluations comportementales et psychologiques standardisées) remplie au cours des séances individuelles de TED mais également par les soignants de l'enfant dans les structures éducatives collectives. Ces multiples évaluations permettent de mieux comprendre l'enfant en l'observant et en captant ses intérêts et ses préférences, ce qui permet ensuite de définir les jeux et les activités les plus engageants pour lui lors des séances individuelles de TED et, ainsi, favoriser au maximum les occasions de synchronisation. D'après l'expérience des soignants, l'intensité de leurs synchronisations avec les enfants est un indicateur clé de la progression future des compétences sociales.
Objectif de la thèse L’objectif de la thèse est de contribuer à une caractérisation fine des synchronisations sur le plan spécifiquement linguistique, en particulier au niveau des composantes prosodique et lexicale. Le corpus sera construit à partir de la base de données exploitée par le projet ANR TEDIA et sera constitué de 100 extraits de 10 minutes d’interactions TED (CHU de Tours). L’enjeu principal sera d’identifier des paramètres linguistiques, prioritairement prosodiques et lexicaux, précurseurs de synchronisation. Dans cette perspective, le traitement du corpus nécessitera : (i) la catégorisation des évènements prosodiques ; (ii) la transcription orthographique des échanges en intégrant les marqueurs verbaux de la parole ; (iii) l’association de paramètres linguistiques aux synchronisations déjà repérées et l’identification potentielle de nouvelles synchronisations de nature linguistique. Profil attendu des candidats
1) Master 2 en Sciences du langage ou Psychologie ou Diplôme d'orthophonie 2) Connaissances en Sciences du langage (phonologie, lexique) 3) Connaissances en Troubles neuro-développementaux
Candidature Les personnes intéressées sont invitées à adresser leur candidature (CV + lettre de motivation) à Gwenolé Quellec (directeur, gwenole.quellec@univ-brest.fr ), Laura Machart (co-encadrante, laura.machart@univ-brest.fr) et Thomas Bertin (co-encadrant, thomas.bertin@univ-brest.fr) avant le 20 mai 2025.
| |||||
6-41 | (2025-04-02) Engineer @ Intelligent Systems and Robotics at Sorbonne University (Paris)The Institute for Intelligent Systems and Robotics at Sorbonne University (Paris) is looking for a highly motivated and ambitious engineer or postdoctoral researcher to conduct research in machine learning for human-robot collaboration. Context and objectives This position focuses on developing machine learning techniques to enhance human awareness in human-robot interaction by integrating situation assessment and action planning. The successful candidate will contribute to cutting-edge research at the intersection of robotics, artificial intelligence, and human interaction, with an emphasis on designing and evaluating robotic systems that facilitate seamless collaboration with humans. The position is for 18 months contract, but there is a possibility to be extended depending on the performance and circumstances. The position is open at both the engineer and post-doctoral levels for candidates with a strong background in machine learning, human-machine interaction, or robotics. Responsibilities: • Develop advanced situation assessment techniques using machine learning to accurately represent user preferences, behaviors, and characteristics based multimodal data to efficiently plan actions. • Collaborate with interdisciplinary teams, including computer scientists, experts from the humanities, and designers, to ensure the usability and effectiveness of the developed techniques. • Publish research findings in top-tier conferences and journals in the field of Human-Machine Interaction and Machine Learning (mainly at the post-doc level) Requirements The successful candidate should have: • Experience in human-machine interaction • Good knowledge of Machine Learning Techniques • Good knowledge of experimental design and statistics • Excellent publication record • Strong skills in Python • Willing to work in multi-disciplinary and international teams • Good communication skills Application Interested candidates should submit the following by email in a single PDF file to: mohamed.chetouani[@]sorbonne-universite.fr with the subject: Application ML for Human-Robot Collaboration • Curriculum vitae with 2 references (recommendation letters are also welcome) • One-page summary of research background and interests • At least three papers (either published, accepted for publication, or pre-prints) demonstrating expertise in one or more of the areas mentioned above • Doctoral dissertation abstract and the expected date of graduation for a post-doc position levale (for those who are currently pursuing a Ph.D) Application’s deadline: April 21, 2025.
|