6-1 | (2021-01-04) Open positions at IDIAP, Martigny, Suisse
There is a fully funded PhD position open at Idiap Research Institute on 'Neural Architectures for Speech Technology'.
The research will build on work done over the past few years at Idiap on creating tools for physiologically plausible modelling of speech. The current 'toolbox' contains rudimentary muscle models and means to drive these using conventional (deep) neural networks. More recently, the focus has been on theoretical underpinnings via rigorous Bayesian techniques.
Although the project remit is quite open, a significant research thread will be to factorise current neural vocoders into physiological and probabilistic components; this will be with a focus on identifying how they may be controlled by external agents such as dialogue managers. Another possible thread is to examine these models in the context of speech recognition. In doing this, we hope not only to enable the next generation of expressive speech recognition and synthesis, but also to make inference about the underlying physiological mechanisms of speech production and perception.
For more information, and to apply, please follow this link: https://www.idiap.ch/education-and-jobs/job-10313
Idiap is located in Martigny in French speaking Switzerland, but functions in English and hosts many nationalities. PhD students are typically registered at EPFL. All positions offer quite generous salaries. Martigny is a local art, culture and viticulture hub, and is close to all manner of skiing, hiking and mountain life.
There are other open positions on Idiap's main page: https://www.idiap.ch/en/join-us/job-opportunities
|
6-2 | (2021-01-04) research scientist in spoken language processing at Naver Labs Europe, Grenoble, France
We are seeking to recruit a research scientist in spoken language processing at Naver Labs Europe (Grenoble, France) - https://europe.naverlabs.com
More details below (you can apply online here as well)
DESCRIPTION
NAVER LABS Europe's mission is to create new ways to interact with digital and physical agents, while paving the way for these innovations into a number of NAVER flagship products and services. This includes research in models and algorithms to give humans faster and better access to data and to allow them to interact with technology in simpler and more natural ways. To fulfill our vision of intelligent devices communicating seamlessly with us, we need to considerably improve existing technology and methods that solve natural language processing problems.
We are looking for applications from research scientists to make outstanding contributions to the invention, development and benchmarking of spoken language processing techniques. The research scientist would be part of the Natural Language Processing group of NAVER LABS Europe and her mission would be to develop research on one or more of the following themes: spoken language translation, speech recognition, text-to-speech synthesis, voice-based conversational search (with potential collaborations with the Search&Recommendation group).
At NAVER LABS we encourage participation in the academic community. Our researchers collaborate closely with universities and regularly publish in venues such as ACL, EMNLP, Interspeech, KDD, SIGIR, ICLR, ICML and NeurIPS.
REQUIRED SKILLS
- Ph.D. in spoken language processing, speech processing, NLP or machine learning.
- Knowledge of latest developments in statistical and deep learning as applied to NLP and speech.
- Strong publication record in top-tier NLP, speech or machine learning conferences.
- Strong development skills, preferably in python and knowledge of relevant frameworks (tensorflow, pytorch, etc).
APPLICATION INSTRUCTIONS
You can apply for this position online. Don't forget to upload your CV and cover letter before you submit. Incomplete applications will not be accepted.
ABOUT NAVER LABS
NAVER LABS Europe has full-time positions, PhD and PostDoc opportunities throughout the year which are advertised here and on international conference sites that we sponsor such as CVPR, ICCV, ICML, NeurIPS, EMNLP, ACL etc.
NAVER LABS Europe is an equal opportunity employer.
NAVER LABS are in Grenoble in the French Alps. We have a multi and interdisciplinary approach to research with scientists in machine learning, computer vision, artificial intelligence, natural language processing, ethnography and UX working together to create next generation technology and services that deeply understand users and their contexts.
|
6-3 | (2021-01-07) Speech-NLP Master 2 Internship Year 2020-2021 at LISN (ex LIMSI), University Paris-Saclay, France
Speech-NLP Master 2 Internship Year 2020-2021
Speech Segmentation and Automatic Detection of Conflicts in
Political Interviews
LISN – Université Paris-Saclay
Internship for Last Year Engineer or Master 2 Students
Keywords: Machine Learning, Diarization, Digital Humanities, Political Speech, Prosody,
Expressive Speech
Context
This internship is part of the Ontology and Tools for the Annotation of Political Speech
(OOPAIP 2018), a transdisciplinary project funded under the DIM-STCN (Text Sciences and
New Knowledge) by the Regional Council of Ile de France. The project is carried out by the
European Center for Sociology and Political Science (CESSP) of the University of Paris 1
Panthéon-Sorbonne, the National Audiovisual Institute (INA), and the LISN. Its objective is to
design new approaches to develop detailed, qualitative, and quantitative analyzes of political
speech in the French media. Part of the project concerns the study of the dynamics of conflicting
interactions in interviews and political debates, which requires a detailed description and a
large corpus to allow for the models’ generalization. Some of the main challenges concern the
performance of speaker and speech style segmentation, e.g., improving the segmentation accuracy,
detecting superimposed speech, measuring vocal effort and other expressive elements.
Objectives
The main objective of the internship is to improve the automatic segmentation of political
interviews. In this context, we will be particularly interested in the detection of hubbub (strong
and prolonged overlapped speech). More precisely, we would like to extract features from the
speech signal (Eyben et al. 2015) correlated with the level of conflictual content in the exchanges,
based, for example, on the arousal level in the speaker’s voice—intermediate level between
the speech signal analysis and the expressivity description (Rilliard, d’Alessandro, and Evrard
2018)—or vocal effort (Liénard 2019).
The internship will initially be based on two corpora of 30 political interviews manually annotated
in speech turns and speech acts—within the framework of the OOPAIP project. It will begin
with a state of the art review of speech diarization and overlapped speech detection (Chowdhury
et al. 2019). The aim will then be to propose solutions based on recent frameworks (Bredin
et al. 2020) to improve the precise localization of speaking segments, in particular when the
frequency of speaker changes is high.
In the second part of the internship, we will look at a more detailed measurement and prediction
of the conflicting level of exchanges. We will search for the most relevant features to describe the
conflicting level and by adapting or developing a neural network architecture for its modeling.
The programming language used for this internship will be Python. The candidate will have
access to the LISN computing resources (servers and clusters with recent generation GPUs).
Publications
Depending on the degree of maturity of the work carried out, we expect the applicant to:
• Distribute the tools produced under an open-source license
• Write a scientific publication
Conditions
The internship will take place over a period of 4 to 6 months at the LISN (formerly LIMSI) in the
TLP group (spoken language processing). The laboratory is located near the plateau de Saclay,
university campus building 507, rue du Belvédère, 91400 Orsay. The candidate will be supervised
by Marc Evrard (evrard@limsi.fr). Allowance under the official standards (service-public.fr).
Applicant profile
• Student in the last year of a 5-years diploma in the field of computer science (AI is a plus)
• Proficiency in Python language and experience in using ML libraries (Scikit-Learn, Tensor-
Flow, PyTorch)
• Strong interest in digital humanities and political science in particular
• Experience in automatic speech processing is preferred
• Ability to carry out a bibliographic study from scientific articles written in English
To apply: Send an email to evrard@limsi.fr including a résumé and a cover letter.
Bibliography
Bredin, Hervé, Ruiqing Yin, Juan Manuel Coria, Gregory Gelly, Pavel Korshunov, Marvin
Lavechin, Diego Fustes, Hadrien Titeux, Wassim Bouaziz, and Marie-Philippe Gill. 2020.
“Pyannote. Audio: Neural Building Blocks for Speaker Diarization.” In ICASSP. IEEE.
Chowdhury, Shammur Absar, Evgeny A Stepanov, Morena Danieli, and Giuseppe Riccardi.
2019. “Automatic Classification of Speech Overlaps: Feature Representation and Algorithms.”
Computer Speech & Language 55: 145–67.
Eyben, Florian, Klaus R Scherer, Björn W Schuller, Johan Sundberg, Elisabeth André, Carlos
Busso, Laurence Y Devillers, et al. 2015. “The Geneva Minimalistic Acoustic Parameter Set
(GeMAPS) for Voice Research and Affective Computing.” IEEE Transactions on Affective
Computing 7 (2): 190–202.
Liénard, Jean-Sylvain. 2019. “Quantifying Vocal Effort from the Shape of the One-Third Octave
Long-Term-Average Spectrum of Speech.” The Journal of the Acoustical Society of America
146 (4): EL369–75.
OOPAIP. 2018. “(Ontologie Et Outil Pour l’annotation Des Interventions Politiques).”
DIM STCN (Sciences du Texte et connaissances nouvelles) Conseil régional d’Ile de
France. http://www.dim-humanites-numeriques.fr/projets/oopaip-ontologie-et-outilspour-
lannotation-des-interventions-politiques/.
Rilliard, Albert, Christophe d’Alessandro, and Marc Evrard. 2018. “Paradigmatic Variation of
Vowels in Expressive Speech: Acoustic Description and Dimensional Analysis.” The Journal
of the Acoustical Society of America 143 (1): 109–22.
|
6-4 | (2021-01-13) PhD position at CWI, Amsterdam, The Netherlands
We have a PhD position available here in CWI, on the topic of user-centered optimisation for immersive media.
I would like to ask you if you could disseminate the call within your network. You can also redirect any potential candidate to me, if they have any questions: irene@cwi.nl
The deadline for applications is February 1st.
|
6-5 | (2021-01-19) Associate professor, Telecom Paris, France
Telecom Paris is hiring an associate professor in machine learning for distributed/multi-view machine listening and audio content analysis
Institut Polytechnique de Paris [1] - Telecom Paris [2], LTCI lab [3], ADASP group [4]
-- Important Dates (UPDATED!) ? *March 20th 2021: closing date* ? End of April 2021: hearings of preselected candidates
Applications are invited for a permanent (indefinite tenure) faculty position at the Associate Professor level (Maitre de Conferences) in machine learning for distributed/multi-view machine listening and audio content analysis.
-- Context
Telecom Paris [2] is a French public institution for engineering higher education (grande ecole) and scientific research, founded in July 1878. It is a founding member of the Institut Polytechnique de Paris [1], a world-class scientific and technological institution. Located in Palaiseau, at the Plateau de Saclay (Paris outskirts), this Institution is a partnership between Ecole Polytechnique, ENSTA Paris, ENSAE Paris, Telecom Paris and Telecom SudParis, with HEC as a key partner. Students and faculty benefit from close relationships between the different institutions. The Information Processing and Communication Laboratory (LTCI) [3] is Telecom Paris? in-house research laboratory. Since January 2017, it has continued the work previously carried out by the CNRS joint research unit of the same name. The LTCI was created in 1982 and is known for its extensive coverage of topics in the field of information and communication technologies. The LTCI?s core subject areas are computer science, networks, data science, signal and image processing and digital communications. The laboratory is also active in issues related to systems engineering and applied mathematics. The open position will be hosted by Telecom Paris? Audio Data Analysis and Signal Processing (ADASP) group [4], a subgroup of the statistics, signal processing and machine learning (S²A) team, within the Images, Data & Signals (IDS) department [5].
-- Main missions
The hired associate professor will be expected to:
[Research activities] ? Develop research in multi-view/distributed machine learning applied to machine listening, in line with the topics of Telecom Paris? Audio Data Analysis and Signal Processing (ADASP) group ? Develop both academic and industrial collaborations, including collaborative activities with other Telecom Paris research departments and teams, and research contracts with industrial players ? Submit proposals to national and international research project calls
[Teaching activities] ? Participate in teaching activities at Telecom Paris and its partners (as part of joint Master programs), especially in machine learning, signal processing, and machine listening, including life-long training programs (e.g. the local Data Scientist certificate)
[Impact] ? Publish high quality research work in leading journals and conferences ? Play an active role in the research communities relevant to the position (serving in scientific committees and boards, organizing seminars, workshops, special sessions...)
-- Candidate profile
As a minimum requirement, the successful candidate will have:
? A PhD degree ? A track record of research and publication in one or more of the following areas: machine learning, signal processing or machine listening ? Experience in deep learning, audio data analysis, machine listening, music data analysis, multi-view learning, distributed learning ? Experience in teaching ? Good command of English
The ideal candidate will also (optionally) have: ? Knowledge in frugal learning techniques ? Experience in source separation/enhancement and signal denoising techniques ? Experience in distributed computing environments
Other skills expected include: ? Capacity to work in a team and develop good relationships with colleagues and peers ? Good communication and pedagogical skills
-- Place of work
Palaiseau (Paris outskirts), France
-- How to apply (UPDATED!)
The application shall be submitted, through this link: https://institutminestelecom.recruitee.com/o/maitre-de-conference-en-machine-listening, as a single pdf file, including:
? a letter of motivation ? a complete and detailed curriculum vitae ? statements of research and teaching interests (4 pages) ? three main publications ? contact information for two references, to be sent to Slim Essid
-- Contact
Slim Essid (Coordinator of the ADASP group), https://perso.telecom-paris.fr/~essid/
[1] https://www.ip-paris.fr/en [2] https://www.telecom-paris.fr/en/home [3] https://www.telecom-paris.fr/en/research/laboratories/information-processing-and-communication-laboratory-ltci [4] https://adasp.telecom-paris.fr [5] http://www.tsi.telecom-paristech.fr/en/
|
6-6 | (2021-02-15) Ingenieur contractuel Police Technique et Scientifique France
Un poste d'ingénieur contractuel à la section audio de la police technique et scientifique est à pourvoir. Pour plus d'informations, voici le lien
https://place-emploi-public.gouv.fr/offre-emploi/police-scientifique---ipts--adjoint-au-chef-de-la-section-audio-reference-2021-545548/
|
6-7 | (2021-03-08) Fully funded PhD at KTH, Stockholm, Sweden
A fully funded PhD position in Deep Learning for Conversational AI
KTH, Royal Institute of Technology, Stockholm, Sweden. Apply here (deadline 2/4)
https://www.kth.se/en/om/work-at-kth/lediga-jobb/what:job/jobID:379667/where:4/
|
6-8 | (2021-03-08) PhD and RA positions at University of Trento, Italy
PhD and RA Positions in Conversational AI in the Health Domain? at University of Trento, Italy
and add this link :
|
6-9 | (2021-03-08) Two PhD positions at NTNU, Trondheim, Norway.
Two
Two PhD positions are open at NTNU Trondheim, Norway
https://www.jobbnorge.no/en/available-jobs/job/200820/2-phd-positions-in-machine-learning-for-speech-analysis-and-recognition
|
6-10 | (2021-03-09) Associate professor at Telecom Paris, France
Telecom Paris is hiring an associate professor in machine learning for distributed/multi-view machine listening and audio content analysis
See offer here: https://adasp.telecom-paris.fr/news/job_offers/highlights/adasp_position_machine_listening_2021/ or read on...
Institut Polytechnique de Paris [1] - Telecom Paris [2], LTCI lab [3], ADASP group [4]
-- Important Dates ? *March 20th 2021: closing date* ? End of April 2021: hearings of preselected candidates
Applications are invited for a permanent (indefinite tenure) faculty position at the Associate Professor level (Maitre de Conferences) in machine learning for distributed/multi-view machine listening and audio content analysis.
-- Context
Telecom Paris [2] is a French public institution for engineering higher education (grande ecole) and scientific research, founded in July 1878. It is a founding member of the Institut Polytechnique de Paris [1], a world-class scientific and technological institution. Located in Palaiseau, at the Plateau de Saclay (Paris outskirts), this Institution is a partnership between Ecole Polytechnique, ENSTA Paris, ENSAE Paris, Telecom Paris and Telecom SudParis, with HEC as a key partner. Students and faculty benefit from close relationships between the different institutions. The Information Processing and Communication Laboratory (LTCI) [3] is Telecom Paris? in-house research laboratory. Since January 2017, it has continued the work previously carried out by the CNRS joint research unit of the same name. The LTCI was created in 1982 and is known for its extensive coverage of topics in the field of information and communication technologies. The LTCI?s core subject areas are computer science, networks, data science, signal and image processing and digital communications. The laboratory is also active in issues related to systems engineering and applied mathematics. The open position will be hosted by Telecom Paris? Audio Data Analysis and Signal Processing (ADASP) group [4], a subgroup of the statistics, signal processing and machine learning (S²A) team, within the Images, Data & Signals (IDS) department [5].
-- Main missions
The hired associate professor will be expected to:
[Research activities] ? Develop research in multi-view/distributed machine learning applied to machine listening, in line with the topics of Telecom Paris? Audio Data Analysis and Signal Processing (ADASP) group ? Develop both academic and industrial collaborations, including collaborative activities with other Telecom Paris research departments and teams, and research contracts with industrial players ? Submit proposals to national and international research project calls
[Teaching activities] ? Participate in teaching activities at Telecom Paris and its partners (as part of joint Master programs), especially in machine learning, signal processing, and machine listening, including life-long training programs (e.g. the local Data Scientist certificate)
[Impact] ? Publish high quality research work in leading journals and conferences ? Play an active role in the research communities relevant to the position (serving in scientific committees and boards, organizing seminars, workshops, special sessions...)
-- Candidate profile
As a minimum requirement, the successful candidate will have:
? A PhD degree ? A track record of research and publication in one or more of the following areas: machine learning, signal processing or machine listening ? Experience in deep learning, audio data analysis, machine listening, music data analysis, multi-view learning, distributed learning ? Experience in teaching ? Good command of English
The ideal candidate will also (optionally) have: ? Knowledge in frugal learning techniques ? Experience in source separation/enhancement and signal denoising techniques ? Experience in distributed computing environments
Other skills expected include: ? Capacity to work in a team and develop good relationships with colleagues and peers ? Good communication and pedagogical skills
Note that you do *not* need to speak French to apply.
-- Place of work
Palaiseau (Paris outskirts), France
-- How to apply
The application shall be submitted, through this link: https://institutminestelecom.recruitee.com/o/maitre-de-conference-en-machine-listening, as a single pdf file, including:
? a letter of motivation ? a complete and detailed curriculum vitae ? statements of research and teaching interests (4 pages) ? three main publications ? contact information for two references, to be sent to Slim Essid
-- Contact
Slim Essid (Coordinator of the ADASP group), https://perso.telecom-paris.fr/~essid/
|
6-11 | (2021-03-16) PhD position at INRIA, Nancy, France
********** PhD position *************
Title: Robust and Generalizable Deep Learning-based Audio-visual Speech Enhancement
The PhD thesis will be jointly supervised by Mostafa Sadeghi (Inria Starting Faculty Position) and Romain Serizel (Associate Professor, Université de Lorraine).
Contacts: Mostafa Sadeghi (mostafa.sadeghi@inria.fr) and Romain Serizel (romain.serizel@loria.fr)
Context: Audio-visual speech enhancement (AVSE) refers to the task of improving the intelligibility and quality of a noisy speech utilizing the complementary information of visual modality (lips movements of the speaker) [1]. Visual modality can help distinguish target speech from background sounds especially in highly noisy environments. Recently, and due to the great success and progress of deep neural network (DNN) architectures, AVSE has been extensively revisited. Existing DNN-based AVSE methods are categorized into supervised and unsupervised approaches. In the former category, a DNN is trained to map noisy speech and the associated video frames of the speaker into a clean estimate of the target speech. The unsupervised methods [2] follow a traditional maximum likelihood-based approach combined with the expressive power of DNNs. Specifically, the prior distribution of clean speech is learned using deep generative models such as variational autoencoders (VAEs) and combined with a likelihood function based on, e.g., non-negative matrix factorization (NMF), to estimate the clean speech in a probabilistic way. As there is no training on noisy speech, this approach is unsupervised.
Supervised methods require deep networks, with millions of parameters, as well as a large audio-visual dataset with diverse enough noise instances to be robust against acoustic noise. There is also no systematic way to achieve robustness to visual noise, e.g., head movements, face occlusions, changing illumination conditions, etc. Unsupervised methods, on the other hand, show a better generalization performance and can achieve robustness to visual noise thanks to their probabilistic nature [3]. Nevertheless, their test phase involves a computationally demanding iterative process, hindering their practical use.
Objectives: Project description: In this PhD project, we are going to bridge the gap between supervised and unsupervised approaches, benefiting from both worlds. The central task of this project is to design and implement a unified AVSE framework having the following features: 1- Robustness to visual noise, 2- Good generalization to unseen noise environments, and 3- Computational efficiency at test time. To achieve the first objective, various techniques will be investigated, including probabilistic switching (gating) mechanisms [3], face frontalization [4], and data augmentation [5]. The main idea is to adaptively lower bound the performance by that of audio-only speech enhancement when the visual modality is not reliable. To accomplish the second objective, we will explore techniques such as acoustic scene classification combined with noise modeling inspired by unsupervised AVSE, in order to adaptively switch to different noise models during speech enhancement. Finally, concerning the third objective, lightweight inference methods, as well as efficient generative models, will be developed. We will work with the AVSpeech [6] and TCD-TIMIT [7] audio-visual speech corpora.
References:
[1] D. Michelsanti, Z. H. Tan, S. X. Zhang, Y. Xu, M. Yu, D. Yu, and J. Jensen, ?An overview of deep-learning based audio-visual speech enhancement and separation,? arXiv:2008.09586, 2020.
[2] M. Sadeghi, S. Leglaive, X. Alameda-Pineda, L. Girin, and R. Horaud, ?Audio-visual speech enhancement using conditional variational auto-encoders,? IEEE/ACM Transactions on Audio, Speech and Language Processing, vol. 28, pp. 1788 ?1800, 2020.
[3] M. Sadeghi and X. Alameda-Pineda, ?Switching variational autoencoders for noise-agnostic audio-visual speech enhancement,? in ICASSP, 2021.
[4] Z. Kang, M. Sadeghi, R. Horaud, ?Face Frontalization Based on Robustly Fitting a Deformable Shape Model to 3D Landmarks,? arXiv:2010.13676, 2020.
[5] S. Cheng, P. Ma, G. Tzimiropoulos, S. Petridis, A. Bulat, J. Shen, M. Pantic, ?Towards Pose-invariant Lip Reading,? in ICASSP, 2020.
[6] A. Ephrat, I. Mosseri, O. Lang, T. Dekel, K. Wilson, A. Hassidim, W.T. Freeman, M. Rubinstein, ?Looking to Listen at the Cocktail Party: A Speaker-Independent Audio-Visual Model for Speech Separation,? SIGGRAPH 2018.
[7] N. Harte and E. Gillen, ?TCD-TIMIT: An Audio-Visual Corpus of Continuous Speech,? IEEE Transactions on Multimedia, vol.17, no.5, pp.603-615, May 2015.
Skills:
- Master's degree, or equivalent, in the field of speech/audio processing, computer vision, machine learning, or in a related field,
- Ability to work independently as well as in a team,
- Solid programming skills (Python, PyTorch),
- A decent level of written and spoken English.
Benefits package:
- Subsidized meals
- Partial reimbursement of public transport costs
- Leave: 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours) + possibility of exceptional leave (sick children, moving home, etc.)
- Possibility of teleworking (after 6 months of employment) and flexible organization of working hours
- Professional equipment available (videoconferencing, loan of computer equipment, etc.)
- Social, cultural, and sports events and activities
- Access to vocational training
- Social security coverage
Remuneration:
Salary: 1982? gross/month for 1st and 2nd year. 2085? gross/month for 3rd year.
Monthly salary after taxes: around 1596,05? for 1st and 2nd year. 1678,99? for 3rd year. (medical insurance included).
|
6-12 | (2021-03-20) Post-doc at Nara Institute for Science and Technology, Japan
[Postdoctoral researcher, Nara Institute of Science and Technology] Augmented Human Communication Laboratory directed by Professor Satoshi Nakamura has a postdoctoral research position available in the area of human information processing, dialogue systems, statistical modeling, machine learning, and brain science for the Training Adapted Personalised Affective Social Skills with Cultural Virtual Agents (ANR-CREST: JPMJCR19A). Affiliation: Division of Information Science, Nara Institute of Science and Technology, Japan. Position: Postdoctoral researcher Recruitment personnel: 1 person Appointment time: May 1, 2021, or later as early as possible to March 31, 2022. Term: Contract can be renewed every year. The longest employment is until March 31, 2025. Trial period: No trial period
Job description: The research area is related to the Training Adapted Personalised Affective Social Skills with Cultural Virtual Agents (ANR-CREST: JPMJCR19A), and fields such as dialogue system using machine learning, and multimodal information processing. Application conditions: - Doctoral researcher A person with a Ph.D. who builds a dialogue system using statistical methods, machine learning, and multimodal information processing. Those who have the necessary knowledge and experience regarding the area and are willing to conduct research independently.
Salary: Determined based on the university regulations Benefits: Join health insurance, pension insurance, accident compensation insurance, and employment insurance
Workplace: Augmented Human Communication Laboratory, Nara Institute of Science and Technology. Employment period: May 1, 2021, or later as early as possible to March 31, 2022. Contract can be renewed every year. The longest employment is until March 31, 2025.
Work style: ? Working days: Monday to Friday ? Holidays: Saturdays, Sundays, national holidays, summer holidays, year-end and new year holidays, and the anniversary of the university foundation (October 1) ? Working hours: Discretionary work system
Deadline: April 9, 2021 (Friday)
[Application method] Documents to be submitted: (1) Resume (using the university's format: see the URL below) https://www.naist.jp/en/about_naist/job_opportunities/resume_format.html (2) List of research achievements (3) Research motivation (A4 one page) (4) Three major publications (5) Letters from two references with their address, telephone number and email address included. Where to submit application documents: After stating 'Postdoctoral researcher application' in the title, Please submit by e-mail to the following contact address. E-mail: tapas-positions@is.naist.jp
[Selection details (selection method, decision on acceptance / rejection), result notification] (1) 1st selection: document screening (2) 2nd selection: online interview After screening the documents, we will contact you for an interview. * Application documents will be used only for the purpose of recruitment screening and will not be used for any other purpose. The application documents will not be returned regardless of the result of acceptance or rejection. In consideration of the risk of personal information leakage due to misdelivery, application documents for non-employees will be responsibly deleted at the end of recruitment activities.
Contact: ?630-0192 8916-5 Takayama-Cho, Ikoma, Nara, Japan Professor Satoshi Nakamura, Augmented Human Communication Laboratory, Nara Institute of Science and Technology E-mail: tapas-positions@is.naist.jp ############################
|
6-13 | (2021-04-05) Researchers in Speech, Text and Multimodal Machine Translation @ DFKI Saarbrücken, Germany
Researchers in Speech, Text and Multimodal Machine Translation @ DFKI Saarbrücken, Germany
--------------------------------------------------------------
The MT group at MLT@DFKI Saarbrücken is looking for
senior researchers/researchers/junior researchers
in speech, text and multimodal machine translation using deep learning.
3 year contracts. Possibility of extension. Ideal starting dates around June/July 2021.
Key responsibilities: - Research and development in speech, text and multimodal MT - Scientific publications - Co-supervision of BSc/MSc students and research assistants - Possibility of teaching at Saarland University (UdS) - Senior: PhD co-supervision - Senior: Project/grant acquisition and management
Qualifications senior researchers/researchers: - PhD in NLP/Speech/MT/ML/CS or related - strong scientific and publication track record in speech/text/multimodal-NLP/MT
Qualifications junior researchers: - MSc in CS/NLP/Speech/ML/MT or related (possibility to do a PhD at DFKI/UdS)
All: - Strong background in machine learning and deep learning - Strong problem solving and programming skills - Strong communication skills in written and spoken English (German an asset, but not a requirement)
Working environment: the post are in the ?Multilinguality and Language Technology? MLT Lab at DFKI (the German Research Center for Artificial Intelligence https://www.dfki.de/en/web/) in Saarbrücken, Germany. MLT is led by Prof. Josef van Genabith. MLT is a highly international team and does basic and applied research.
Application: a short cover letter indicating which level (senior / researcher / junior) you apply for, a CV, a brief summary of research interests, and contact information for three references. Please submit your application by Friday April 23rd, 2021 as PDF to Prof. Josef van Genabith (josef.van_genabith@dfki.de) indicating your earliest possible start date. Positions remain open until filled.
Selected MT@MLT group publications 2020/21: Xu et al. Probing Word Translation in the Transformer and Trading Decoder for Encoder Layers. NAACL-HLT 2021. Chowdhury et al. Understanding Translationese in Multi-View Embedding Spaces. COLING 2020. Pal et al. The Transference Architecture for Automatic Post-Editing. COLING 2020. Ruiter et al. Self-Induced Curriculum Learning in Self-Supervised Neural Machine Translation. EMNLP-2020. Zhang et al. Translation Quality Estimation by Jointly Learning to Score and Rank. EMNLP 2020. Xu et al. Dynamically Adjusting Transformer Batch Size by Monitoring Gradient Direction Change. ACL 2020. Xu et al. Learning Source Phrase Representations for Neural Machine Translation. ACL 2020. Xu et al. Lipschitz Constrained Parameter Initialization for Deep Transformers. ACL 2020. Herbig et al. MMPE: A Multi-Modal Interface for Post-Editing Machine Translation. ACL 2020. Herbig et al. MMPE: A Multi-Modal Interface using Handwriting, Touch Reordering and Speech Commands for Post-Editing Machine Translation. ACL 2020. Alabi et al. Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of Yorùbá and Twi. LREC 2020. Costa-jussàet al. Multilingual and Interlingual Semantic Representations for Natural Language Processing: A Brief Introduction. In: Computational Linguistics (CL) Special Issue: Multilingual and Interlingual Semantic Representations for Natural Language Processing. Xu et al. Efficient Context-Aware Neural Machine Translation with Layer-Wise Weighting and Input-Aware Gating. IJCAI 2020
DFKI is one of the leading AI centers worldwide, with several sites in Germany. DFKI Saarbrücken is part of the Saarland University (UdS) Informatics Campus. UdS has exceptionally strong CS and CL schools and, in addition to DFKI, a Max Plank Institute for Informatics, a Max Plank Institute for Software Systems, the Center for Bioinformatics, and the CISPA Helmholz Center for Information Security.
Geographic environment: Saarbrücken (http://www.saarbruecken.de/en) is the capital of Saarland, one of the Federal States in Germany, located right in the heart of Europe and a cultural center in the border region of Germany, France and Luxembourg. Frankfurt and Paris are less than 2 hours by train. Living cost is moderate in comparison with other cities in Germany and Europe.
|
6-14 | (2021-04-02) PhD at Université d'Avignon, France
**** If you don't read French and are interested in a PhD position in AI/NLP please contact us directly for further information. French speaking is not required for the position. ****
Les réponses doivent nous parvenir de préférence **avant le 10 mai**.
PROPOSITION SUJETS DE THESES
CONTRATS DOCTORAUX 2021-2024
Appel cible (merci de cocher la case correspondante):
X Contrat doctoral ministeriel ED 536
□ Contrat doctoral ministeriel ED 537
------------------------------------------------------------------------------------------------------------------------
Directeur de these : Fabrice LEFEVRE
Co-directeur eventuel :
Co-encadrant eventuel : Bassam JABAIAN
Titre en francais : Transformer et renforcer pour le transfert et l’apprentissage en ligne des
agents conversationnels vocaux
Titre en anglais : Transformer and Reinforce for transfer and online learning of vocal
conversational agents
Mots-cles : IA, natural language processing , human-machine vocal interactions, deep learning,
deep reinforcement learning, transfer learning
Co tutelle : XXX - Non Pays :
Opportunites de mobilite a l’international du doctorant dans le cadre de sa these : oui
Profil du candidat :
Le candidat doit avoir un master en informatique avec une composante sur les méthodes
d'apprentissage automatique et/ou sur l’ingénierie de la langue. La bourse de thèse fera l’objet
d’un concours au sein de l’Ecole Doctorale 536 de l’université d’Avignon, avec une audition du
candidat retenu par les encadrants de thèse.
Pour postuler merci d’envoyer un mail avant le 10 mai 2021 à Fabrice Lefèvre
(fabrice.lefevre@univ-avignon.fr) et Bassam Jabaian (bassam.jabaian@univ-avignon.fr)
incluant : votre CV, une lettre de motivation avec votre positionnement sur les propositions
d’études ci-dessous, d’éventuelles lettres de recommandation et vos relevés de notes.
Presentation detaillee du sujet :
Domaine / Thematique : IA/NLP
Objectif : Permettre le transfert et l'apprentissage en ligne des agents conversationnels vocaux
avec une combinaison Transformers/Renforcement
Contexte et enjeux : Parmi les activités de recherche en intelligence artificielle, améliorer
l'interaction vocale avec les machines reste un défi majeur d’actualité. Le LIA traite de
multiples aspects liés à l’interaction vocale mais cherche à travers cette thèse à approfondir en
particulier la recherche sur les techniques d’apprentissage des agents conversationnels vocaux
à base de réseaux de neurones profonds supervisés et renforcés. De tels agents dialoguant
sont un enjeu primordial afin d’améliorer les capacités de nos sociétés à gérer une
distanciation sociale contrôlée, notamment par la délégation de certaines tâches risquées à
des artefacts matériels efficients, et bien acceptés par le grand public.
Les récentes évolutions en réseaux de neurones ont permis d’élaborer des systèmes de
génération de texte (ou modèles de langage) de grande qualité. Ils sont pour cela appris sur
des quantités gigantesques de documents, mais permettent en contrepartie une couverture
très large du langage humain. Les représentants les plus avancés dans ce domaine sont les
Transformers, qui permettent d’éliminer le recours à la récurrence dans les réseaux (couteux
en calcul) en privilégiant un mécanisme d’attention démultipliée (multi-head self-attention).
De nombreux dérivés de ces modèles existent et ont permis des gains conséquents en
performance sur de nombreuses tâches impliquant la génération de texte en langage naturel.
Ainsi BERT [1] et GPT forment les grandes familles (et leurs multiples descendants distilBERT,
alBERT, GPT-2…). Mais si de tels modèles permettent de porter à un plus haut niveau de
performance nos capacités de modélisation du langage, il reste encore à savoir les mettre en
oeuvre pour des tâches plus spécifiques ou exigeantes, comme les systèmes d’interaction
orale.
Ainsi le problème de leur application au cas des agents conversationnels reste ouvert car à la
fois l’interaction directe avec les humains accentue l’impact des erreurs et imperfections des
modèles et d’autre part la gestion des interactions se fait dans un contexte finalisé, où
l’objectif n’est pas le simple échange de données langagières mais la réussite d’un objectif
latent (obtenir une information précise, réaliser ou faire réaliser une action…). Aussi le
challenge principal que nous souhaitons porter dans la thèse est de permettre une adaptation
sur une tache particuliere des capacites d’un Transformer pre-entraine, notamment pour
l’elaboration d’un agent conversationnel. Des approches par transfert d’apprentissage ont
déjà été initiées mais leurs résultats sont contrastés et doivent être renforcés [2]. Nous
identifions deux axes majeurs pour la thèse :
Axe 1/ Transfert et apprentissage en ligne / Tout d’abord les approches de transfert reposent
toujours sur le recours à de nouvelles données pré-collectées auxquelles sont confrontés les
modèles [2]. Ainsi, dans la continuité de nos précédents travaux sur l’apprentissage en ligne
des systèmes de dialogue, nous souhaiterions élaborer et évaluer des strategies efficaces pour
permettre le recours a des apprentissages par renforcement [3, 4]. Pour rendre les systèmes
artificiels capables d'apprendre à partir des données, deux hypothèses fortes sont
généralement faites : (1) la stationnarité du système (l'environnement de la machine ne
change pas avec le temps), (2) l'interdépendance entre la collecte des données et le processus
d'apprentissage (l'utilisateur ne modifie pas son comportement dans le temps). Or les
utilisateurs ont une tendance naturelle à adapter leur comportement en fonction des réactions
de la machine, ce qui gêne la convergence de l'apprentissage vers un équilibre lui permettant
de satisfaire en permanence les attentes de l'utilisateur. Aussi les interfaces vocales doivent
évoluer vers une nouvelle génération de systèmes interactifs, capables d'apprendre
dynamiquement sur le long terme à partir d'interactions, tout en anticipant les variations du
comportement des humains, étant eux-mêmes vu comme des systèmes évolutifs.
L’enjeu est alors, dans le contexte de l’apprentissage par renforcement profond [5] de pouvoir
démontrer l’optimalité de la convergence des algorithmes utilisés pour mettre à jour les poids
de certaines couches du modèle au fur et à mesure des interactions avec des utilisateurs, sans
prendre le risque d’une atténuation des performances initiales. La détermination optimale des
paramètres à modifier doit pouvoir être automatisée. Ce projet s’inscrit aussi dans le cadre de
l’apprentissage en continu (continual learning) [6] d’un agent conversationnel.
Axe 2/ Modelisation de l’oral / Ensuite l’essentiel des modèles pré-cités modélisent
exclusivement le langage écrit et intègrent peu de mécanismes dédiés à la nature du langage
parlé. Aussi nous souhaiterions augmenter les capacités de telles machines à faire face à : 1)
des entrées utilisateurs plus naturelles, et comprenant donc de nombreux écarts vis-à-vis de
l’écrit (agrammaticalité, confusions, reprises, corrections, hésitations…) et 2) des erreurs dans
les transcriptions dues au composant de reconnaissance de la parole. Il est donc nécessaire de
pouvoir interfacer le composant d’analyse de la parole avec la chaine de modelisation du
langage qui suit (analyse sémantique, suivi de l’état de dialogue, gestion du dialogue,
génération et synthèse de parole) de manière à prendre en compte les multiples hypotheses
realistes (et non plus seulement la meilleure). Et enfin permettre un arbitrage entre ces
hypothèses qui prenne en compte les traitements suivants, en conformité avec le processus
cognitif humain équivalent (capable de re-traiter ses hypothèses acoustiques les plus
probables en cas de conflit avec ses inférences sémantiques).
Cette étude pourra être menée dans plusieurs cadres applicatifs, à préciser au démarrage de la
thèse : par exemple un robot Pepper dialoguant affecté à la gestion de l’accueil d’un lieu public
(par exemple dans un hôpital ou un musée). Il sera alors possible de déléguer des tâches de
premier contact et d’orientation à des artefacts insensibles aux transmissions biologiques, ce
qui constitue un atout hautement stratégique afin d’améliorer la gestion d’une situation de
crise, du type de la pandémie mondiale de coronavirus en cours.
[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding,” arXiv.org, Oct. 2018.
[2] T. Wolf, V. Sanh, J. Chaumond, and C. Delangue, “TransferTransfo: A Transfer Learning
Approach for Neural Network Based Conversational Agents,” arXiv.org, Jan. 2019.
[3] E. Ferreira, B. Jabaian, and F. Lefèvre, “Online adaptative zero-shot learning spoken
language understanding using word-embedding,” in Proceedings of 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP 2015, 2015, pp. 5321–5325.
[4] M. Riou, B. Jabaian, S. Huet, and F. Lefèvre, “Joint On-line Learning of a Zero-shot Spoken
Semantic Parser and a Reinforcement Learning Dialogue Manager,” in IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP 2019, Brighton, United
Kingdom, May 12-17, 2019, 2019, pp. 3072–3076.
[5] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “A Brief Survey of Deep
Reinforcement Learning,” IEEE SIGNAL Process. Mag. Spec. ISSUE Deep Learn. IMAGE Underst.,
Aug. 2017.
[6] Z. Chen and B. Liu, Lifelong Machine Learning, Second Edition, vol. 12, no. 3. Morgan &
Claypool Publishers, 2018.
Les sujets devront être adressés à
secretariat-ed@univ-avignon.fr
|
6-15 | (2021-04-15) Director, Center for Language and Speech Processing, Baltimore, MA, USA
POSITION: Director, Center for Language and Speech Processing
REPORTS TO: Ed Schlesinger, Benjamin T. Rome Dean Johns Hopkins University, Whiting School of Engineering
INSTITUTION: Johns Hopkins University, Baltimore, MD https://engineering.jhu.edu/
2.23.21
The Whiting School of Engineering at Johns Hopkins University invites nominations and applications for the position of Director of the Center for Language and Speech Processing (CLSP). The Director will be appointed as a full-time tenured faculty member in the Whiting School of Engineering and will be encouraged to remain active in research, with strategic leadership of the Center as their top priority. This is an outstanding opportunity for an accomplished scholar with leadership experience to further strengthen an exceptional interdisciplinary research center at the nation’s first research university. The best candidates will embody the intellectual distinction, entrepreneurial capacity, collaborative spirit, transparency, inclusiveness, and creativity that characterize the School’s culture and will bring a scholarly record deserving appointment as tenured professor at The Johns Hopkins University.
The Center for Language and Speech Processing
CLSP is one of the Whiting School’s 25 Interdisciplinary Centers and Institutes. The Center currently comprises over 25 tenure-line and research faculty whose primary appointments are in the Whiting School of Engineering or in other closely related schools, along with over 70 PhD students. CLSP was established in 1992 and grew to prominence under the directorship of the late Frederick Jelinek. It aims to understand how human language is used to communicate ideas, and to develop technology for machine analysis, translation, and transformation of multilingual speech and text. In 2007 CLSP gained a sibling, the national Human Language Technology Center of Excellence (https://hltcoe.jhu.edu), a governmentfunded research center at Johns Hopkins that develops critical speech and language technology for government use; several HLTCOE researchers are tightly integrated into CLSP. Recently, CLSP has further expanded its research portfolio by adding several prominent researchers in computer vision and related fields. As part of its educational mission, CLSP coordinates a full complement of courses dealing with a diverse array of topics in language and speech. It offers a weekly seminar featuring prominent visiting speakers in speech and language processing. It also runs the Fred Jelinek Memorial Workshop in Speech and Language Technology (JSALT), a widely-known residential research workshop that annually assembles teams of researchers from around the world to spend 6 summer weeks conducting intensive research on fundamental problems. Held annually since 1995, the workshop has produced many important advances in speech and language technology.
Opportunities for the Center Director
The CLSP Director will work with colleagues in and beyond CLSP to increase its impact by both enhancing its historic strengths and positioning it as a central element of a set of AI-related initiatives across the Whiting School and the University more broadly. To these ends, the Director will identify ways in which the Center will continue to grow and evolve and through which the Center, the Whiting School, and Hopkins can recruit, sustain, and deploy the human and financial resources needed to further distinguish itself.The Director will work to maintain the Center’s position as the disciplinary and intellectual hub of language and speech processing research within the University, enabling CLSP to contribute to and benefit from the success of significant institutional investment in artificial intelligence and machine learning more broadly, including potential applications to key societal problems such as healthcare and scientific endeavors such as linguistics and neuroscience. Collaborations with the Applied Physics Lab (www.jhuapl.edu) present opportunities to bring additional resource, expertise, and scale to advance CLSP research including potentially in classified research. Beyond Hopkins, CLSP’s Director will foster connections with industry as part of the Center’s efforts to expand its base of resources and relationships, to disseminate knowledge and discoveries, and to develop and transfer technologies that may have an impact in the world. In these various external activities, the Director will work with the University’s technology ventures office (https://ventures.jhu.edu), with faculty and students, and with alumni and donors. Specific strategies for enhancing CLSP’s strengths, broadening its impact, and positioning it relative to Hopkins-wide initiatives, along with measures of success and the prioritization of activities designed to achieve success, will be developed by the Director in collaboration with CLSP’s faculty and the Dean.
Diversity, equity, and inclusion at the Whiting School
WSE has a stated commitment to diversity, equity, and inclusion: “Diversity and inclusion enrich our entire community and are critical to both educational excellence and to the advancement of knowledge. Discovery, creativity, and innovation flourish in an environment where the broadest range of experiences are shared, where all voices are heard and are valued, and where individuals from different cultures and backgrounds can collaborate freely to understand and solve problems in entirely new ways.” As the leader of the Center and within the School, CLSP’s Director will work to enhance and expand diversity and inclusion at all levels and will ensure that the Center is a welcoming and supportive environment for all.
Position Qualifications
The new Director will be a proven, entrepreneurial leader who can bring faculty, staff, and students together to pursue a compelling vision of CLSP as an international hub for Language and Speech Processing research and as a site of innovation, teaching, and translation. They will have strong skills for mentoring junior faculty and will promote the interests of the Center. Intellectual curiosity and fundraising experience are valued. They will have a dossier that represent a distinguished track record of scholarship and teaching; a passionate commitment to research, discovery, and application; and an interest in and success at academic administration. Expected educational background and qualifications include:
• An earned doctorate in an area such as electrical and computer engineering, computer science, or a closely related field and a scholarly record deserving appointment as tenured professor at The Johns Hopkins University;
• Recognized leadership in their respective field with a distinguished national and international reputation for research and education;
• Excellent communication skills in both internal and external interactions;
• Strong commitment to diversity and inclusion at all levels among faculty, students, and staff, along with measurable and sustained impact on the diversity and inclusiveness of organizations they have led or been part of; and
• Leadership and administrative experience within a complex research environment or in national/international organizations connected to their respective field.
*
The Whiting School of Engineering has engaged Opus Partners (www.opuspartners.net) to support the recruitment of the CLSP Director. Craig Smith, Partner, and Jeff Stafford, Senior Associate, are leading the search. Applicants should submit their CV and a letter of interest outlining their research and leadership experience to Jeffrey.stafford@opuspartners.net. Nominations, expressions of interest, and inquiries should go to the same address. Review of credentials will begin promptly and will continue until the appointment is finalized. Every effort will be made to ensure candidate confidentiality. The Whiting School of Engineering and CLSP are committed to building a diverse educational environment, and women and minorities are strongly encouraged to apply. Johns Hopkins University is an equal opportunity employer and does not discriminate on the basis of gender, marital status, pregnancy, race, color, ethnicity, national origin, age, disability, religion, sexual orientation, gender identity or expression, veteran status, other legally protected characteristics or any other occupationally irrelevant criteria. The University promotes Affirmative Action for minorities, women, individuals who are disabled, and veterans. Johns Hopkins University is a drug-free, smoke-free workplace.
|
6-16 | (2021-04-11) These CIFRE: Système dialogique de questions-réponses contrôlé : application aux forums sur la santé des femmes, LIG, Univ. Grenoble, France
Offre de thèse CIFRE: Système dialogique de questions-réponses contrôlé : application aux forums sur la santé des femmes
Laboratoire d'Informatique de Grenoble / Université Grenoble Alpes (http://lig-getalp.imag.fr/), Grenoble
Société Shesmet (https://www.shesmet.com), Paris
L?objectif de cette thèse de doctorat est de concevoir des méthodes permettant à un système de dialogue de répondre précisément à une question concernant la santé intime des femmes. En effet, la santé génésique et sexuelle des femmes est un sujet encore trop peu abordé dans son ensemble et trop souvent résumé à la santé reproductive. Pourtant les femmes ont physiologiquement plusieurs étapes de vie qui vont impacter de manière plus ou moins forte leur bien-être mental et physique : la puberté, la maternité, la ménopause et l?après ménopause. La santé sexuelle des femmes est aussi un enjeu de politique publique qui a évolué au cours des ans et qui reste au c?ur des problématiques de notre société : précarité menstruelle, contraception, accès à l?IVG, violences sexuelles. L?accès à une information de qualité, personnalisée et en tout anonymat est un fort vecteur d?autonomisation et d?égalité de soins pour l?ensemble de la population féminine. Pourtant, aujourd'hui les femmes voulant se renseigner sur ces thèmes sont souvent en prise avec un flot d'informations qui peuvent être discordantes, incomplètes et de sources non vérifiables (p.ex., les forum de santé alimentés par les utilisateurs). C'est pourquoi Shesmet et le laboratoire d'informatique de Grenoble (LIG) s'associent pour proposer une méthode dialogique de question réponse qui permette d'adapter une réponse experte et vérifiée au contexte particulier d'une question de santé exprimée par une utilisatrice. Cette approche est originale dans le sens ou elle tire partie du meilleur des capacités humaines (réponses pertinente et sans erreur) et computationnelles (capacité des modèles profonds à traiter des données à grande échelle).
Objectif de la thèse
Au cours de la dernière décennie, les systèmes traitement automatique du langage naturel ont fait de grands progrès grâce à l'émergence de l'apprentissage profond. La technique est aujourd'hui suffisamment mature pour être intégrée dans les assistants personnels [Chen et Gao, 2017] et les systèmes de Question/Réponse. L'architecture actuelle des réseaux neuronaux comprend les RNN (LSTM/GRU) [Hochreiter et Schmidhuber, 1997 ; Cho et al., 2014] et les transformer [Vaswani et al., 2017], en combinaison avec les mécanismes d'attention [Bahdanau et al., 2014] pour permettre l'utilisation d'informations contextuelles allant au-delà d'un seul ou de quelques tours de dialogue [Bothe et al., 2018]. Cependant, ces corpus sont entraînés sur des masses de données tellement grandes et peu contrôlées que les modèles ont tendance à reproduire les comportements de ces données. Par exemple, les grands corpus de journaux généralistes font généralement la part belle au genre masculin. De même les systèmes de question/réponse sont généralement limités à trouver un extrait dans un grand corpus ou à générer une réponse à partir d'un modèle profond. Contrairement à ces systèmes de question réponses classiques, l'objectif sera ici de utiliser l'expertise de spécialistes en santé pour adapter une réponse au contexte de la question [Wu2019]. Ainsi, les experts humains conçoivent des réponses de grande qualité et vérifiées tandis que les systèmes profonds les adaptent aux plus grands nombre en évitant les erreurs usuelles des modèles profonds.
La tâche est donc de concevoir un système capable :
1. de classifier les énoncés du dialogue et les associés à un ensemble de réponses pré-établies ;
2. d?éditer les réponses pré-établie afin de les adapter à la question et au contexte dialogique ;
3. d'estimer le degré de réassurance nécessaire à insérer dans la réponse ;
4. d'expliquer les réponses données.
Dans le cadre de ce programme indicatif de travail, ce doctorat intéressera aux verrous suivants.
-
Des domaines peu doté : Il existe peu de corpus accessible hormis les données disponibles au sein de l'entreprise. Une piste de recherche sera d'utiliser les modèles pré-entrainés du LIG sur le français (dont Flaubert, [Le2020], modèle Bert pour le français que l'équipe GETALP a largement contribué a développer) qui est disponible via la bibliothèque Transformer de Hugging Face qui sera transférée [Wolf et al 2019] à la nouvelle tâche de conversation.
-
Des biais de modèles. En effet, le sujet se prête à l?analyse d?un enjeu sociétal propre au développement des TAL : la prise en compte des biais de genre face à une population cible principalement féminines. Le LIG a développé une expertise sur ce problème tant du point de vue des modèles textuels qu'oraux [Garnerin2020].
-
La contextualisation en dialogue. Dans un forum, l'interaction ne peut être assumée comme étant dyadique (plus de deux personnes) comme dans le dialogue classique (1 personne + un système) dialogue. Comment prendre en compte la contribution de plusieurs intervention pour personnaliser la réponse à faire à une seule personne reste un problème ouvert.
-
Explicabilité. Afin de garantir la transparence du système et de permettre aux utilisatrices d?interpréter les réponses fournies, le système doit être en mesure d'expliquer pourquoi une réponse précise à été donnée. Une technique est de fournir les éléments du dialogue qui sur lesquels la réponse a été sélectionnée et adaptée [Atanasova2020] mais d'autres méthodes pourront être explorées.
Environnement scientifique
La thèse sera menée au sein de l'équipe Getalp du laboratoire LIG (https://lig-getalp.imag.fr/). La personne recrutée sera accueillie au sein de l?équipe qui offre un cadre de travail stimulant, multinational et agréable. Par ailleurs, la personne recrutée passera un temps significatif au sein de l'entreprise Shesmet. Shesmet est une startup en e-santé travaillant à la fois sur des projets de recherche et développement et sur des missions d?accompagnement autour de l?innovation en santé auprès d?institutionnels en santé, publics et privés. La société a lancé en 2020 My S Life, une plateforme d'information en santé intime et sexuelle de la femme (www. myslife.co)
Les moyens pour mener à bien le doctorat seront assurés tant en ce qui concerne les missions en France et à l?étranger qu?en ce qui concerne le matériel (ordinateur personnel, accès aux serveurs GPU du LIG, Grille de calcul Jean Zay du CNRS).
Comment postuler ?
Les candidats doivent être titulaires d'un Master en informatique ou en traitement automatique du langage naturel (ou être sur le point d'en obtenir un). Ils doivent avoir une bonne connaissance des méthodes d?apprentissage automatique et idéalement une expérience en collecte et gestion de corpus. Ils doivent également avoir une bonne connaissance de la langue française. Une expérience dans le domaine du dialogue, des systèmes question réponse ou la génération automatique de textes serait un plus.
Les candidatures sont attendues jusqu'au 3 mai 2021. Elles doivent contenir : CV + lettre/message de motivation + notes master + lettre(s) de recommandations; et être adressées à François Portet (Francois.Portet@imag.fr), Didier Schwab (Didier.Schwab@imag.fr) et Juliette Mauro (juliette.mauro@shesmet.com).
References
[Atanasova2020] P Atanasova, JG Simonsen, C Lioma, I Augenstein A Diagnostic Study of Explainability Techniques for Text Classification. Proceedings of EMNLP 2020
[Bahdanau2014] D Bahdanau, K Cho, Y Bengio. 'Neural machine translation by jointly learning to align and translate', arXiv preprint arXiv:1409.0473, 2014
[Bothe2018] Chandrakant Bothe, Cornelius Weber, Sven Magg, Stefan Wermter 'A Context-based Approach for Dialogue Act Recognition using Simple Recurrent Neural Networks', LREC 2018.
[Chen2017] Yun-Nung Chen, Jianfeng Gao, Open-Domain Neural Dialogue Systems, IJCNLP 2017
[Cho2014] Cho K., van Merrienboer B., Gülçehre Ç., Bougares F., Schwenk H., Bengio Y., « LearningPhrase Representations using RNN Encoder-Decoder for Statistical Machine Translation », CoRR, 2014.
[Garnerin2020] Mahault Garnerin, Solange Rossato, Laurent Besacier: Gender Representation in Open Source Speech Resources. LREC 2020: 6599-6605
[Hochreiter1997] Hochreiter S., Schmidhuber J., « Long Short-Term Memory »,Neural Comput., vol. 9, no8,p. 1735-1780, November, 1997
[Le2020] Le, Hang and Vial, Loic and Frej, Jibril and Segonne, Vincent and Coavoux, Maximin and Lecouteux, Benjamin and Allauzen, Alexandre and Crabbé, Benoit and Besacier, Laurent and Schwab, Didier (2020) FlauBERT: Unsupervised Language Model Pre-training for French, Proceedings of The 12th Language Resources and Evaluation Conference, Marseille, France, 2479--2490. https://github.com/getalp/Flaubert
[ParlAI] https://parl.ai/docs/tutorial_basic.html
[Vaswani2017] A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, AN Gomez, et al. 'Attention is all you need', 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
[Wolf2019] Thomas Wolf and Victor Sanh and Julien Chaumond and Clement Delangue (2019) TransferTransfo: {A} Transfer Learning Approach for Neural Network Based Conversational Agents, arxiv, 2019 https://github.com/huggingface/transfer-learning-conv-ai
[Wu2019] Wu, Y., Wei, F., Huang, S., Wang, Y., Li, Z., & Zhou, M. (2019, July). Response generation by context-aware prototype editing. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 7281-7288).
|
6-17 | (2021-04-09) Ingénieur.e développement - Inria Bordeaux, France
Ingénieur.e développement - Inria Bordeaux Sud-Ouest
Thématique : Conception d’une architecture logicielle pour une application en
apprentissage statistique (analyse et classification des voix pathologiques)
Type de contrat : CDD
Début : à partir du 1er juin 2021 et jusqu’au 31 juillet 2021 (possibilité de prolongation)
Date limite de candidature : 15 mai 2021
Lieu : Inria Bordeaux Sud-Ouest
Niveau de diplôme exigé : Bac + 5 ou équivalent
Autre diplôme apprécié : thèse de doctorat
Fonction : Ingénieur scientifique contractuel
Niveau d'expérience souhaité : 3 à 12 ans
Salaire brut mensuel : 2632€ à 3543€, selon diplômes et expérience professionnelle acquise sur poste similaire
Responsable : Khalid Daoudi
Contexte et atouts du poste
Inria, institut national de recherche dédié au numérique, promeut l’excellence scientifique au service du
transfert technologique et de la société.
Inria emploie 2700 collaborateurs issus des meilleures universités mondiales, qui relèvent les défis des sciences
informatiques et mathématiques. Son modèle agile lui permet d’explorer des voies originales avec ses partenaires
industriels et académiques, et de répondre aux enjeux pluridisciplinaires et applicatifs de la transition numérique.
Engagé auprès des acteurs de l’innovation, Inria crée les conditions de rencontres profitables entre recherche
publique, R&D privée et entreprises. Inria transfère vers les startup, les PME et les grands groupes ses résultats et ses
compétences, dans des domaines tels que la santé, les transports, l’énergie, la communication, la sécurité et la protection
de la vie privée, la ville intelligente, l’usine du futur... Inria développe aussi une culture entrepreneuriale ayant conduit à
la création de 120 startup.
Le centre Inria Bordeaux Sud-Ouest est un des neuf centres d’Inria et compte 20 équipes de recherche. Le
centre Inria est un acteur majeur et reconnu dans le domaine des sciences numériques. Il est au coeur d’un riche
écosystème de R&D et d’innovation : PME fortement innovantes, grands groupes industriels, pôles de compétitivité,
acteurs de la recherche et de l’enseignement supérieur.
GEOSTAT est une équipe de recherche Inria dont la thématique de recherche est le traitement de signaux
naturels complexes, notamment en biophysique (geostat.bordeaux.inria.fr/).
Mission confiée
Plusieurs maladies et pathologies peuvent causer des dysfonctionnements ou des altérations dans la production
de la parole. Les plus connues sont les maladies neurodégénératives (telles que les maladies de Parkinson et
d’Alzheimer) et les maladies respiratoires (telles que l’asthme, la BPCO ou la Covid-19). On parle alors de troubles de
la parole ou de parole pathologique.
Il est maintenant établi que certaines de ces maladies se caractérisent par une manifestation précoce des
troubles de la parole. Le développement de biomarqueurs objectifs vocaux est devenu ainsi un enjeu majeur pour l’aide
au diagnostic et suivi de ces maladies. La mission de l’ingénieur(e) recruté(e) s’inscrit dans ce cadre.
L’objectif de la mission est de concevoir une architecture logicielle, en Python, pour :
1 développer une boîte à outils générique de traitement du signal dédiée à l’analyse de la parole pathologique ;
2 implémenter un biomarqueur vocal de la fonction respiratoire en utilisant des techniques d’apprentissage
statistique, dont le Deep Learning.
Cette dernière tâche s’inscrit dans le cadre d’un projet de recherche clinique en partenariat avec l’AP-HP
(Assistance Publique - Hôpitaux de Paris), notamment le service de pneumologie et de réanimation de L'hôpital La
Pitié-Salpêtrière. Le but de ce projet est le développement d’un biomarqueur vocal de l’état respiratoire et de son
évolution pour l’aide au télé-suivi de patients atteints d’une affection respiratoire, dont la Covid-19.
Principales activités
Pour des raisons de sécurité et de confidentialité, les données vocales et cliniques des patients sont hébergées
sur les serveurs EDS (Entrepôt de Données de Santé) de l’AP-HP.
La première tâche sera ainsi de développer une API permettant la communication avec l’infrastructure
d’hébergement.
La deuxième tâche sera d’implémenter des techniques éprouvées d’analyse de la parole pathologies puis
d’autres issus de recherches récentes. Cette tâche s’appuiera, le cas échéant, sur Parselmouth
(parselmouth.readthedocs.io/en/stable/) qui est une librairie Python pour Praat (www.fon.hum.uva.nl/praat/).
La troisième étape consistera à implémenter et expérimenter des techniques d’apprentissage statistique en
utilisant les données de patients. Cette tâche s’appuiera sur les framework habituels de Machine Learning (TensorFlow,
PyTorch, Scikitlearn).
Encadrement
L’ingénieur.e disposera d’un encadrement scientifique, par Khalid Daoudi de l’équipe GEOSTAT, et technique
par Dan Dutartre et François Rué du Service d'Expérimentation et de Développement (SED) d’Inria-Bordeaux.
Compétences
Être titulaire d’un diplôme d’ingénieur et/ou doctorat en sciences du numérique
Disposer d’une expérience significative dans le développement ou le pilotage d’un projet logiciel en python.
. Disposer d’une formation solide en apprentissage statistique (Machine Learning) ainsi que d’une expérience notable
dans ce domaine ;
. Disposer d’une expertise solide en développement logiciel pour être en capacité de s’adapter à différents types
langages des plus standards (Python, C, C++) ; une forte compétence en python est requise ;
. Des connaissances en traitement du signal seraient un plus très apprécié ;
. Maîtriser les concepts, la méthodologie et les outils de la qualité logicielle ;
. Maîtriser les méthodologies de gestion de projet logiciel collaboratif ;
. Maîtriser les méthodologies d’architectures logicielles modulaires ;
. Excellent relationnel ;
. Savoir travailler en équipe pluridisciplinaires ;
. Savoir s’adapter au contexte projet ;
. Être autonome dans son organisation personnelle et le reporting ;
. Avoir une bonne communication écrite et orale en français ;
. Maîtriser l’anglais technique et scientifique.
Candidature
Le(a) candidat(e) est invité(e) à envoyer sa candidature à khalid.daoudi@inria.fr ; francois.rue@inria.fr ;
dan.dutartre@inria.fr
|
6-18 | (2021-04-11) Proposal for a postdoctoral position at INRIA, Bordeaux, France
Proposal for a postdoctoral position at INRIA, Bordeaux, France
Title: Sparse predictive models for the analysis and classification of pathological speech
Keywords: Pathological speech processing, Sparse modeling, Optimization algorithms, Machine learning,
Parkinsonian disorders, Respiratory diseases
Contact and Supervisor: Khalid Daoudi (khalid.daoudi@inria.fr)
INRIA team: GEOSTAT (geostat.bordeaux.inria.fr)
Duration: from 01/11/2021 to 31/12/2022 (could be extended to an advanced or a permanent position)
Salary: 2653€ / month
Profile: PhD degree obtained after August 2019 or to be defended by the end of 2021. High quality applications
with a PhD obtained before August 2019 could be considered for an advanced research position.
Required Knowledge and background: A solid knowledge in speech/signal processing; A good mathematical
background; Basics of machine learning; Programming in Matlab and Python.
Scientific research context
During this century, there has been an ever increasing interest in the development of objective vocal biomarkers
to assist in diagnosis and monitoring of neurodegenerative diseases and, recently, respiratory diseases because of
the Covid-19 pandemic. The literature is now relatively rich in methods for objective analysis of dysarthria, a
class of motor speech disorders [1], where most of the effort has been made on speech impaired by Parkinson’s
disease. However, relatively few studies have addressed the challenging problem of discrimination between
subgroups of Parkinsonian disorders which share similar clinical symptoms, particularly is early disease stages
[2]. As for the analysis of speech impaired by respiratory diseases, the field is relatively new (with existing
developments in very specialized areas) but is taking a great attention since the beginning of the pandemic.
On the other hand, the large majority of existing processing methods (of pathological speech in general) still
heavily rely on a core of feature estimators designed and optimized for healthy speech. There exist thus a strong
need for a framework to infer/design speech features and cues which remain robust to the perturbations caused
by (classes of) disordered speech. The first and main objective of this proposal is to explore the framework of
sparse modeling of speech which allow a certain flexibility in the design and parameter estimation of the sourcefilter
model of speech production. This exploration will be essentially based on theoretical advances developed
by the GEOSTAT team and which have led to a significant impact in the field of image processing, not only at
the scientific level [3] but also at the technological level (www.inria.fr/fr/i2s-geostat-un-innovation-lab-enimagerie-
numerique).
The second objective of this proposal is to use the resulting representations as inputs to basic machine learning
algorithms in order to conceive a vocal biomarker to assist in the discrimination between subgroups of
Parkinsonian disorders (Parkinson’s disease, Multiple-System Atrophy, Progressive Supranuclear Palsy) and in
the monitoring of respiratory diseases (Covid-19, Asthma, COPD).
Both objectives benefit from a rich dataset of speech and other biosignals recently collected in the framework of
two clinical studies in partnership with university hospitals in Bordeaux and Toulouse (for Parkinsonian
disorders) and in Paris (for respiratory diseases).
Work description
As stated above, the work to be carried is decomposed in two parts. The main part consists in developing new
algorithms, based on sparse modeling, for the analysis of a class of disordered speech. The second part consists
in exploring machine learning tools to develop vocal biomarkers for the purpose of (differential) diagnosis and
monitoring of the diseases under study.
1. Sparse modeling for disordered speech analysis
The first task will be to investigate sparsity in the framework of linear prediction modeling of speech. The latter
is indeed one of the building blocks for the estimation of core glottal, phonation and articulatory features. Sparse
linear prediction (SLP) has been recently investigated in a convex setting using the L1-norm and applied,
essentially, to speech coding [4]. We will start by investigating the potential of this convex setting in disordered
speech analysis. We will then explore the use of non-convex penalties that allow sparsity control and a better
decoupling the vocal tract filter from excitation source. We will study the spectral properties of the different
models and revisit a set of acoustic features which are not robust to perturbations raising in dysarthric speech.
We will then explore the potential of SLP in designing new features which could be informative about dysarthria.
The algorithmic developments will be evaluated using a rich set of biosignals obtained from patients with
Parkinsonian disorders and from healthy controls. The biosignals are electroglottography and aerodynamic
measurements of oral and nasal airflow as well as intra-oral and sub-glottic pressure.
After dysarthria analysis, we will study speech impairments caused by respiratory deficits. The main goal here
will be to automatically identify respiratory patterns and to design features to quantify the impairments. The
developments will be evaluated using manual annotations, by an expert phonetician, of speech signals obtained
from patients with respiratory deficit and from healthy controls.
Depending on the work progress and time constraints, we may also explore sparsity beyond the linear prediction
model through existing nonlinear representations of speech. It is well known indeed that the linear source-filter
model of speech cannot capture several nonlinearities which exist in the speech production process, particularly
in disordered speech.
2. Machine learning for disease diagnosis and monitoring
Using the outcomes of the first part, the (experimental) objective of the second part is to apply basic machine
learning algorithms (LDA, logistic regression, decision trees, SVM…) using standard tools (such as Scikit-
Learn) to conceive robust algorithms that could help, first, in the discrimination between Parkinsonian disorders
and, second, in the monitoring of respiratory deficit.
3. Work synergy
- The postdoc will interact closely with an engineer who is developing an open-source software architecture
dedicated to pathological speech processing. The validated algorithms will be implemented in this architecture
by the engineer, under the co-supervision of the postdoc.
- Giving the multidisciplinary nature of the proposal, the postdoc will interact with the clinicians participating in
the two clinical studies.
References:
[1] J. Duffy. Motor Speech Disorders Substrates, Differential Diagnosis, and Management. Elsevier, 2013.
[2] J. Rusz et al. Speech disorders reflect differing pathophysiology in Parkinson's disease, progressive
supranuclear palsy and multiple system atrophy. Journal of Neurology, 262(4), 2015.
[3] H. Badri. Sparse and Scale-Invariant Methods in Image Processing. PhD thesis, University of Bordeaux,
France, 2015.
[4] D. Giacobello et al. Sparse Linear Prediction and Its Applications to Speech Processing. IEEE Transactions
on Audio Speech and Language Processing, (20)5, 2012.
|
6-19 | (2021-04-19) Technical engineer at ELDA, Paris
The European Language resources Distribution Agency (ELDA), a company specialized in Human Language Technologies within an international context, acting as the distribution agency of the European Language Resources Association (ELRA), is currently seeking to fill an immediate vacancy for a Technical Engineer position.
Job description Under the supervision of the CEO, the responsibilities of the Technical Engineer include planning and implementing technical development of tools, software components or applications for language resource production and management. He/she will be in charge of contributing in the current language resources production workflows and managing R&D projects while being also hands-on whenever required by the language resource production and management team. He/she will liaise with external partners at all phases of the projects (submission to calls for proposals, building and management of project teams) within the framework of international, publicly- or privately-funded projects.
This yields excellent opportunities for creative and motivated candidates wishing to participate actively to the Language Engineering field.
The position is based in Paris 13.
Salary: Commensurate with qualifications and experience (between 45-55K?). Other benefits: complementary health insurance and meal vouchers.
Required profile ? Master 2 or PhD in Computer Science, Natural Language Processing, or equivalent ? Experience in Natural Language Processing (speech processing, data mining, machine translation, etc.) ? Familiarity with open source and free software ? Good level of English, with strong writing and documentation skills ? Dynamic and communicative, flexible to work on different tasks in parallel ? Ability to work independently and as part of a multidisciplinary team ? Citizenship (or residency papers) of a European Union country ? Proficiency in Python ? Knowledge and hands-on in XML and Json ? Proficiency in classic shell scripting in a Linux environment (POSIX tools, Bash, awk)
About ELDA is a human-sized company (15 people) acting as the distribution agency of the European Language Resources Association (ELRA). ELRA was established in February 1995, with the support of the European Commission, to promote the development and exploitation of Language Resources (LRs). Language Resources include all data necessary for language engineering, such as monolingual and multilingual lexica, text corpora, speech databases and terminology. The role of this non-profit membership Association is to promote the production of LRs, to collect and to validate them and, foremost, make them available to users. The association also gathers information on market needs and trends.
For further information about ELDA/ELRA, visit: http://www.elda.org
Applicants should email a cover letter addressing the points listed above together with a curriculum vitae to:
ELDA 9 rue des Cordelières 75013 Paris FRANCE Email: job@elda.org
|
6-20 | (2021-04-19) Web Developer at ELDA, Paris, France
The European Language resources Distribution Agency (ELDA), a company specialized in Human Language Technologies within an international context is currently seeking to fill an immediate vacancy for a permanent Web Developer position.
Job description Under the supervision of the technical department manager, the responsibilities of the Web Developer consist in designing and developing web applications and software tools for linguistic data management. Some of these software developments are carried out within the framework of European research and development projects and are published as free software. Depending on the profile, the Web Developer could also participate in the maintenance and upgrading of the current linguistic data processing toolchains, while being hands-on whenever required by the language resource production and management team.
The position is based in Paris 13.
Salary: Commensurate with qualifications and experience (between 36-45K?). Other benefits: complementary health insurance and meal vouchers
Required profile ? Master (BAC + 5 or higher) in Computer Science or a related field (experience in natural language processing is a strong plus) ? Proficiency in Python ? Hands-on experience in Django ? Hands-on knowledge of a distributed version control system (Git preferred) ? Knowledge of SQL and of RDBMS (PostgreSQL preferred) ? Basic knowledge of JavaScript and CSS ? Basic knowledge of Linux shell scripting ? Practice of free software ? Proficiency in French and English ? Curious, dynamic and communicative, flexible to work on different tasks in parallel ? Ability to work independently and as part of a multidisciplinary team ? Citizenship (or residency papers) of a European Union country
About ELDA is a human-sized company (15 people) acting as the distribution agency of the European Language Resources Association (ELRA). ELRA was established in February 1995, with the support of the European Commission, to promote the development and exploitation of Language Resources (LRs). Language Resources include all data necessary for language engineering, such as monolingual and multilingual lexica, text corpora, speech databases and terminology. The role of this non-profit membership Association is to promote the production of LRs, to collect and to validate them and, foremost, make them available to users. The association also gathers information on market needs and trends.
For further information about ELDA/ELRA, visit: http://www.elda.org
Applicants should email a cover letter addressing the points listed above together with a curriculum vitae to: ELDA 9 rue des Cordelières 75013 Paris FRANCE Email: job@elda.org
|
6-21 | (2021-04-22) Post-doc at GIPSA-Lab Grenoble, France
Informations générales
Référence : UMR5216-ALLBEL-024 Lieu de travail : ST MARTIN D HERES Date de publication : mardi 13 avril 2021 Type de contrat : CDD Scientifique Durée du contrat : 12 mois Date d'embauche prévue : 1 juin 2021 Quotité de travail : Temps complet Rémunération : entre 3768? et 3938? bruts mensuels, selon expérience Niveau d'études souhaité : Doctorat Expérience souhaitée : 2 à 10 années
Missions
Ce post-doctorat fait partie du projet ANR GEPETO (GEstures and PEdagogy of InTOnation), dont le but est d'étudier l'utilisation de gestes manuels par le biais d'interfaces humain-machine, pour la conception d'outils et méthodes permettant l'apprentissage du contrôle de l'intonation (mélodie) dans la parole.
En particulier, ce poste se place dans le contexte de la rééducation vocale, dans le cas de dégradation ou d'absence de vibration des plis vocaux chez des patients atteints de troubles du larynx. Les solutions médicales actuelles pour remplacer cette vibration consistent à injecter une source sonore artificielle dans le conduit vocal, directement par la bouche ou en transmission par les tissus du cou, grâce à un électrolarynx. Ce vibreur génère une source vocale de substitution sur laquelle l'utilisateur peut articuler normalement de la parole. Une alternative est de capter à l'aide d'un microphone la parole non-voisée produite par une personne en absence de vibration des plis vocaux (par exemple un chuchotement), et d'y ré-introduire le voisement en temps-réel par synthèse vocale. La voix reconstruite est alors jouée en temps-réel sur un haut-parleur. Aujourd'hui, l'ensemble de ces systèmes génèrent des signaux d'intonation (mélodie) relativement constante, conduisant à des voix très robotiques.
Le but du projet GEPETO à GIPSA-lab est d'ajouter à ces deux solutions un contrôle de l'intonation en temps-réel par le geste de la main, qui sera capté par diverses interfaces (tablette, accéléromètre, etc.), et d'étudier l'usage de tels systèmes dans des situations d'interactions orales.
Le post-doctorat se concentrera sur la solution de conversion chuchotement-parole qui est déjà disponible au laboratoire. Le travail sera divisé en deux tâches.
Dans un premier temps, il s'agira d'ajouter le contrôle gestuel de l'intonation au système de conversion chuchotement-parole. Celui-ci se fera dans l'environnement Max/MSP (langage C/C++), où différents modules sont déjà disponibles au laboratoire (gestion des interfaces, moteur de synthèse, analyse de la parole chuchotée). Diverses interfaces permettant de capter les gestes manuels dans différents espaces (trajectoire sur une surface, dans l'espace, pression, etc.) seront étudiées.
Dans un deuxième temps, nous chercherons à évaluer l'usage d'un tel système dans une application de suppléance vocale, et en particulier la coordination entre le contrôle manuel de l'intonation avec le contrôle naturel de l'articulation. D'abord, diverses stratégies de contrôle seront étudiées étant donnée les interfaces disponibles. Notamment, la question du contrôle du voisement (activation ou non de la source glottique) sera abordée. Cette première étape sera évaluée sur des tâches simples d'imitation de phrases, selon des critères de coordination rythmique entre contrôle de la source et de l'articulation, ainsi que de charge cognitive associée à la combinaison des deux contrôles. Ensuite, nous travaillerons sur l'usage d'un tel système dans des situations de communication. Il s'agit d'un contexte où l'utilisateur doit produire des phrases intelligibles et expressives pour son interlocuteur, sans référence à imiter. Nous proposerons des stratégies d'apprentissage à l'utilisation d'un tel système, et les évaluerons sur plusieurs échelles temporelles (jours, semaines, mois). Ces stratégies seront développées selon des protocoles proposés par des partenaires du projet travaillant sur l'apprentissage du contrôle de l'intonation de langues étrangères.
Activités
- Prendre en main les différents modules pour la conversion chuchotement-parole disponibles au laboratoire (analyse du chuchotement, moteur de synthèse, gestion des interfaces) dans l'environnement Max/MSP - Connecter les différents modules et développer le système de suppléance vocale contrôlé par le geste manuel, en testant divers contrôleurs gestuels pour le contrôle de l'intonation et du voisement - Proposer un protocole d'évaluation de ces capteurs en termes de synchronisation rythmique des contrôles manuel et articulatoire, ainsi que de charge cognitive - Évaluer ces capteurs sur un groupe d'utilisateurs - Proposer des méthodes d'apprentissage pour l'usage d'un tel système - Proposer un protocole d'évaluation de l'apprentissage sur plusieurs échelles temporelles (jours, semaines, mois) - Évaluer l'apprentissage sur un groupe d'utilisateur
Compétences
- Langage C/C++ (connaissance approfondie) - Matlab (connaissance approfondie) - Programmation Max/MSP (connaissance souhaitée) - Traitement du signal (connaissance générale) - Traitement de la parole (connaissance souhaitée) - Forte motivation pour la méthodologie et l'expérimentation - Maîtrise du français (langue utilisée pour le développement et l'évaluation du système)
Expérience souhaitée: Synthèse de la parole, codage temps-réel Max MSP, interfaces homme-machine, expériences cognitives
Contexte de travail
Gipsa-lab est une unité de recherche mixte du CNRS, de Grenoble INP, et de l'Université de Grenoble Alpes ; elle est conventionnée avec Inria et l'Observatoire des Sciences de l'Univers de Grenoble. Fort de 350 personnes dont environ 150 doctorants, Gipsa-lab est un laboratoire pluridisciplinaire développant des recherches fondamentales et finalisées sur les signaux et systèmes complexes. Il est reconnu internationalement pour ses recherches en Automatique, Signal et Images, Parole et Cognition et développe des projets dans les domaines stratégiques de l'énergie, de l'environnement, de la communication, des systèmes intelligents, du vivant et de la santé et de l'ingénierie linguistique. De par la nature de ses recherches, Gipsa-lab maintient un lien constant avec le milieu économique via un partenariat industriel fort. Son potentiel d'enseignants-chercheurs et chercheurs est investi dans la formation au niveau des universités et écoles d'ingénieurs du site grenoblois (Université Grenoble Alpes). Gipsa-lab développe ses recherches au travers de 16 équipes de recherche organisées en 4 pôles. Elle compte 150 permanents et environ 250 non-permanents (doctorants, post-doctorants, chercheurs invités, étudiants stagiaires de master, etc.).
Le.a post-doctorant.e sera rattaché.e à l'équipe CRISSP (Cognitive Robotics, Interactive Systems, Speech Processing) du Pôle Parole et Cognition de GIPSA-lab.
|
6-22 | (2021-05-14) Ph D position at Prosody/Language Acquisition, Sign language: University of Lisbon
Prosody/Language Acquisition, Sign language: PhD, University of Lisbon
Applications are invited for one funded PhD position at the Phonetics and Phonology Lab and the Lisbon Baby Lab of the Center of Linguistics of the University of Lisbon (CLUL). The candidate will develop a project on the Prosody of Portuguese Sign Language/Língua Gestual Portuguesa (LGP). Research on this minority language is remarkably scarce. The work will contribute to the knowledge of the unexplored issues of production, perception and/or acquisition of prosody in LGP.
General scientific area: Linguistics, Psychology
Specific scientific area: Phonology (Prosody), Psycholinguistics, Sign language, Language processing, Language acquisition
Applications are invited from candidates holding a Master degree (MA) in Linguistics, Psychology or related areas
The work will be conducted at the Phonetics and Phonology Lab and Lisbon Baby Lab (PhonLab/LBL), under the supervison and/or co-supervision of Marina Vigário, Sónia Frota and/or Marisa Cruz. PhonLab/LBL is a leading group for research on prosody and the acquisition of prosody, with a strong interest in multimodal prosody and sign language, working with a network of partners on visual prosody, gestures and sign language. The research will take advantage of the resources, facilities and human assets available at the Lab. One of two possible PhD programs from the University of Lisbon can be chosen: PhD in Linguistics (School of Arts and Humanities, University of Lisbon) and PhD in Cognitive Sciences (University of Lisbon).
The successful candidate is expected to start in the beginning of July 2021.
Application deadline: 11th June 2021
Sónia Frota
Professora catedrática | Professor
Coordenadora Científica - CLUL | Scientific Coordinator - CLUL
Centro de Linguística da Universidade de Lisboa | Center of Linguistics of the University of Lisbon (CLUL)
https://www.researchgate.net/profile/Sonia_Frota2
Faculdade de Letras da Universidade de Lisboa | School of Arts and Humanities
|
6-23 | (2021-05-16) Postdocs at LUDO-VIC, Paris France
Recherche de « jeunes docteurs en 1er CDI»
en linguistique, didactique des langues
ET en Natural Language Processing
La société LUDO-VIC a pour devise :
« Quels que soient votre langue maternelle et votre niveau de scolarisation, apprenez les bases de n’importe quels
concepts : une nouvelle langue, des gestes de santé/sécurité, du savoir-être, etc.. »
Ce but est atteint par la contextualisation des éléments des concepts à transmettre grâce à de courtes animations 3D
mettant en scène les avatars Ludo et Vic qui ont été spécifiquement conçus pour ne stigmatiser aucune population
sur terre et pour promouvoir l’égalité des sexes. Ces saynètes expliquent à l’oral et dans la langue maternelle de
l’apprenant les éléments à transmettre, levant ainsi la barrière de l’écrit et celle de la langue vernaculaire.
Nous avons développé ainsi une application dénommée BasicFrançais, avec un cofinancement européen, qui permet
à des populations allophones d’acquérir les bases du français, initialement au niveau A1.1, et nous nous fixons
comme but d’aller jusqu’au niveau A2.
Notre recherche de « jeunes docteurs en premier CDI » portent sur une application dérivée, nommée BasicX dans
laquelle X est une langue pratiquée sur le territoire français, allant des créoles de Mayotte, à ceux de la Réunion et de
l’arc antillais, aux langues amérindiennes de Guyane, au Kanak de Nouvelle Calédonie, au polynésien, et l’ensemble
des dialectes de la métropole (alsacien(s), basque, picard, occitan(s), etc…), mais aussi les langues parlées par les
migrants. La Direction Générale de la Langue Française et des Langues de France compte environ 75 de ces langues
dialectales, et environ 230 langues sont parlées en Europe.
Le projet de R&D consiste à créer des scénarios d’interaction dans une langue à apprendre, collecter des données et
les analyser, participer au développement des technologies de l’intelligence artificielle dans la langue en question
(reconnaissance, synthèse vocale, gestion des dialogues). Tout en étant ambitieux, ce projet relève du faisable
puisque la plage lexicale du niveau A1 ne comporte qu’environ 1000 mots et une petite centaine de dialogues très
simples.
La personne « idéale » est donc compétente en Traitement Automatique de la Parole et Intelligence Artificielle,
mais maîtrise également un dialecte parlé sur le territoire français, ou une langue issue de l’immigration. Nous
sommes conscients que ce « mouton à cinq pattes » est rare, et considèrerons donc des candidatures venant soit de
la didactique des langues, soit du NLP.
La société est basée en région parisienne, mais les candidats pourront travailler depuis leur lieu habituel de
résidence. Envoyez votre CV à jack@ludo-vic.com
LUDO-VIC SAS – 103 Boulevard Macdonald 75019 PARIS
RCS 824194492 Paris – http://www.ludo-vic.com
|
6-24 | (2021-05-20) PhD position , LIA, Avignon, France
Main laboratory: ?Laboratoire Informatique d?Avignon? (LIA)
Start time:? September 2021
Project context
This Ph.D. position is part of the French research project DIETS (Automatic diagnosis of errors of end-to-end speech transcription systems from users perspective) funded by the ANR (French National Research Agency) which aims at analyzing finely recognition errors by taking into account their human reception, and understanding and visualizing how these errors manifest themselves in an end-to-end ASR framework. The main objectives are to propose original automatic approaches and tools to visualize, detect and measure transcription errors from the end-users perspective.
Candidate profile
?The applicant must hold a Master degree in Computer Science. ?Mastery of at least one common object programming language (Java, C++...) and one scripting language (Python, Perl...) are mandatory, furthermore experience in automatic language and speech processing, or machine learning, data mining are appreciated. He or she should also show interest in linguistics and the study of human behavior.
Objectives
The main objective of the thesis is to finely analyze transcription errors from the point of view of their reception by the user. The thesis will have three complementary parts:
1. Approaches for error detection in transcripts of end-to-end ASR systems. This should lead to original confidence measures.
2. Detailed analysis of transcription errors in French, whether human or automatic, with a traditional or end-to-end system, in order to understand how errors are viewed from a human perspective. This will shed light on new classes of errors, guided by their difficulty, or ease, to be understood by end users.
3. Realization of a new body of automatic transcriptions where errors are annotated using precise linguistic information, and information collected during perceptual tests to reflect how users perceive (and possibly correct) these errors. Carrying out different perceptual tests, by confronting humans with these transcription errors.
It will be a question of laying the first bases of a new and transversal research, at the crossroads between linguistics, computer science and cognitive sciences, for the evaluation of automatic systems and the understanding of NLP systems based on deep architectures. The Ph.D. student will then have the opportunity to learn and propose innovative approaches in automatic speech processing for the understanding of architectures with deep neural networks, but also to have an openness and skills in linguistics and on the implementation of perceptual tests.
Interests for the candidate:
- Very favorable and collaborative work environment in an internationally recognized research laboratory in language processing and machine learning.
- Implementation, analysis and proposals for innovative approaches to different ASR systems (classical and end-to-end frameworks).
- Development of complementary metrics to WER that are user-oriented.
- Transdisciplinary scientific work allowing openness to other disciplines (e.g. linguistics and cognitive sciences).
Applications? should be sent to:
and should include:
- a detailed CV (education and research experiences),
- a cover letter specifying the candidate?s research interests on this proposed Ph.D. thesis, - Bachelor (Licence) and Master grades in detail,
- at least one reference that could be contacted for recommandation.
|
6-25 | (2021-05-25) Two fully-funded PhD positions, INRIA and Vivoka, Metz, France (updated)
Inria and Vivoka are offering two fully-funded PhD positions in the context of an academic-industry partnership aiming to further develop the Voice Development Kit (VDK), the very first solution allowing a company to design an embedded voice interface in a simple, autonomous and quick way (https://vivoka.com/).
The successful candidates will share their time between Vivoka's R&D team and Inria's Multispeech team, that is the largest research team in the field of speech processing in France.
Detailed offers: - Multi-factor data augmentation and transfer learning for embedded automatic speech recognition: https://recrutement.inria.fr/public/classic/en/offres/2021-03756 - Joint embedded speech separation, diarization and recognition for the automatic generation of meeting minutes: https://recrutement.inria.fr/public/classic/en/offres/2021-03757
Starting date: October 1, 2021 Duration: 3 years Location: Metz, France Salary: from 1,870 to 1,950 EUR net/month
To apply: Submit your application online at the above URLs and send a copy to recrutement@vivoka.com. Applications will be assessed on a rolling basis. Please apply as soon as possible and no later than July,16, 2021.
|
6-26 | (2021-05-28) Position of Assistant Professor, Univ. Groningen, The Netherlands
Job description
We invite applications for an Assistant Professor in Speech Technology. Generally, for this position, you will teach and develop courses, perform research, supervise graduate research, and have an active role in shaping the emerging educational and research programme.
We recognize research as a critical part of the profile of an Assistant Professor, and therefore allocate 40% of your position to do research (provided you teach at least 2 courses/year). That research may dovetail with the courses you teach, to ensure that your expertise is integrated into the programme. Ideally, your research would overlap with that of PhD students ? and, where relevant, graduate students could contribute to your research through their thesis projects. As a team, we are keen on applying for grants in the years ahead to build consortia and further solidify our expertise.
We see teaching as an interactive and engaging process. Consequently, the courses include many individual and group activities and encourage creative, out-of-the-box, hands-on approaches to learning that balance theory and practice. Specifically, given the start-up phase of the programme and potential for growth, this position is open to a range of profiles and contributions. In addition to supervising theses within your area of expertise, you will support the teaching and/or curriculum development of courses in speech synthesis, speech recognition, Python, and machine learning for voice tech (all courses already have detailed week-by-week descriptions but lack student-ready syllabi, giving you some creative freedom -- more information about the courses, including learning outcomes, is available upon request):
? Speech Synthesis I and II
? Speech Recognition I and II
? Python for Voice Technology (and Intro to Python at the undergraduate level)
? Machine Learning for Voice Technology
If you are interested in increasing your appointment to a full-time one, you may also teach Statistics (undergraduate level) under a separate contract.
Qualifications
We are looking for an enthusiastic colleague with demonstrated teaching and research skills and an affinity for interdisciplinary approaches to teaching. Research expertise that involves speech recognition, voice synthesis, and machine learning with audio data is crucial.
The ideal candidate has:
? a PhD in Linguistics, Computer Science, AI or a comparable domain (ideally on topics related to ASR or speech synthesis)
? an ability to develop course content for the courses you will teach
? a capacity to teach master?s students and supervise master?s projects
? the willingness to apply an inter- and transdisciplinary perspective to research and education
? relevant publications
? a speech tech network in academia and/or industry
? a University Teaching Qualification, or the willingness to acquire one within two years after the starting date.
Organisation
The University of Groningen, established in 1614, is one of the oldest and most prestigious European universities. You will work at the university's newest faculty, Campus Fryslân, located in the picturesque capital of Fryslân, Leeuwarden (the European Capital of Culture in 2018). The faculty is dedicated to interdisciplinary and transdisciplinary education and research and provides a stimulating working environment in which mutual support is combined with room for individual initiative. You will become a member of our high-standing academic and international community. We challenge our staff and students to approach issues from multiple disciplines and encourage them to take a different view. We are curious about yours!
Within Campus Fryslân, you will primarily be working in the new Voice Technology Master?s programme. The MSc. Voice Technology is a one-year English language master?s programme with a highly interdisciplinary scope. It was developed in close cooperation with other universities and partners from the private sector (critical input continues to be provided by Dutch SMEs alongside international tech companies like Apple, Mozilla, and Google). This means that scientific scholarship is balanced with applied know-how in the programme. The MSc. Voice Technology is launching for the first time in September 2021 with a small cohort of students from an array of backgrounds, ranging from AI and Computer Science to Linguistics and Humanities.
Conditions of employment
We offer you in accordance with the Collective Labour Agreement for Dutch Universities:
? a salary, depending on qualifications and work experience, with a minimum of ? 3,746 to a maximum of ? 5,127 (salary scale 11) gross per month for a full-time position
? a holiday allowance of 8% gross annual income
? an 8.3% end-of-the-year allowance
? minimum of 29 holidays and additional 12 holidays in case of full-time employment.
The position has a 60-40 percent distribution with regard to teaching-research. The post will be established for a fixed term period of two years. Towards the end of that period there will be a result- and development interview in order to decide whether the appointment will be made permanent.
Application
Do you want to become a member of our team? Please send your application to us, by submitting the following documents:
1. letter of application
2. curriculum vitae
3. a statement on teaching, detailing courses taught or developed
4. email and telephone contact information of at least two referees.
You can submit your application until 13 June 11:59pm / before 14 June 2021 Dutch local time (CET) by means of the application form (click on 'Apply' below on the advertisement on the university website).
Only complete applications submitted by the deadline will be taken into consideration. The starting date for this position is 1 August 2021.
The interview will consist of two parts: the interview (30 minutes) and the mock lecture (15 minutes) during which you will demonstrate your knowledge of the research domain and showcase your teaching capabilities.
Unsolicited marketing is not appreciated.
Information
For information you can contact:
Please do not use the e-mail address(es) above for applications.
Additional information
|
6-27 | (2021-06-02) Rand D engineer at Telepathy Labs, Zurich, Switzerland
ASR Research and Development Engineer, Speech
To strengthen our Research and Development (R&D) organization, innovate and
improve our Automatic Speech Recognition (ASR) products , we need
experienced software engineers with specific skills focused on ASR. You will be
working with the ASR research and development team, and the position will be
based in Zurich, Switzerland.
Principal responsibilities
* Work together within ASR R&D team to strengthen and extend the quality and the
functionality of the existing core engine algorithm and framework.
* Document and communicate effectively the design and implementation proposals, and
the intermediate and final development results in team internal meetings, and in wider
R&D or divisional meetings, when requested.
* Define and implement test cases and metrics processes aimed at qualifying the new
developments within the team adopted sw development and testing processes.
* Follow adopted industry standards and agile development models in place, plus be
ready to accommodate rapid customer driven specification changes.
Knowledge, Skills and Qualifications:
Years of Work Experience: 3 years of professional experience are required
Required
Skills:
The successful candidate is a team player and a fast learner with an
analytical mindset and a pragmatic approach to problem solving.
Knowledge of main ASR softwares, DSP theory, feature extraction etc.
Actual experience within ASR research and development teams.
Experience with ASR open source Toolsets such as Kaldi, Sphynx, HTK,
Fairseq, NeMo and other Pytorch / Tensorflow based libraries.
Experience with high level programming languages such as C, C++, Java.
Experience with distributed version control systems (e.g. Git).
Working knowledge of Linux Operating system.
Excellent oral and written communication skills in English.
Preferred
Skills:
Experience with LSTM and/or Attention Neural Networks and other
Deep Learning approaches as applied to ASR domain.
Knowledge of embedded software programming in C/C++.
Experience with continuous integration and delivery processes.
Experience with scripting languages such as Python, Perl, etc.
Experience in software development preferably in embedded/small
resource software system design and development.
Education: Minimum : MSc in computer science, or equivalent
Desirable : PhD degree in Computer Science, Artificial Intelligence,
Machine Learning, Speech Science.
Work Permit: Permit to work in Switzerland (EU-28 or equivalent) required.
Contact: Pierre-Edouard Honnet pe.honnet@telepathy.ai
Vijeta Avijeet vijeta.avijeet@telepathy.ai
|
6-28 | (2021-06-03) Full professor at Radboud University, Nijmegen, The Netherlands
At Radboud University we have a position for a full professor Artificial Intelligence & Language, Speech and Communication: https://www.ru.nl/werken-bij/vacature/details-vacature/?recid=1152936&doel=embed&taal=nl
Could you include this job position on ISCA's job page:
The website mentions an ultimate date for application of 11 June, but we will be flexible for applications arriving before 16 June if sent to:Prof. José Sanders, Head of Department Language & CommunicationTel.: +31 24 361 28 02Email: jose.sanders@ru.nl
|
6-29 | (2021-06-04)PhD and Postdoc positions at University of Bielefeld, Germany
PhD position in Phonetics (full time) at Bielefeld University, Germany
Within the newly funded Transregional Collaborative Research Center ?Constructing Explainability?, we are offering a position within the subproject on ?Technically enabled explaining of speaker traits? for a period of 4 years:
|
6-30 | (2021-06-06) Ph D position at University of Paderborn, Germany
https://ei.uni-paderborn.de/fileadmin/elektrotechnik/fg/nth/Stellenangebote/Kennziffer4707.pdf
|
6-31 | (2021-06-08) PhD position at University of Bielefeld, Germany
The Digital Linguistics Lab (head: JProf. Dr.-Ing. Hendrik Buschmeier) at Bielefeld University is seeking to fill a researcher position (PhD-student, E13 TV-L, 100%, fixed-term until 6/2025) in the newly established collaborative research center TRR 318 ?Constructing Explainability?[^1], sub-project A02 ?Monitoring the understanding of explanations?[^2].
Join us to work in a large interdisciplinary team (computer science, linguistics, computational linguistics, psychology, media science, economics and sociology) on research questions in the intersection of explainable AI and human-computer interaction.
Project A02 will carry out interaction studies and build statistical and computational models to monitor explainees' understanding of explanations based on their multimodal feedback (e.g., head nods, facial expressions, gaze, backchannels, clarification requests).
The formal job advertisement with information on how to apply can be found here:
https://uni-bielefeld.hr4you.org/job/view/540/research-position-for-the-sfb-trr-318-subproject-a02-hb?page_lang=en
Questions? Don?t hesitate to get in touch: hbuschme@uni-bielefeld.de
Hendrik Buschmeier
[^1]: https://www.uni-paderborn.de/en/trr318 [^2]: https://www.uni-paderborn.de/en/trr318/subprojects/a02
|
6-32 | (2021-06-24) PhD position at IMAG, Grenoble, France
Please find below the description of a PhD position in ?Citation extraction classification for knowledge extraction and analysis of a scientific field?.
Starting date: October 01, 2021 Deadline for Applications: July 5th, 2021
Keywords: natural language processing, citation classification, transfer learning, deep learning
Context
The NanoBubbles ERC project objective is to understand how, when and why science fails to correct itself. The project?s focus is nanobiology and it combines approaches from the natural, computer science, and social sciences and the humanities (Science and Technology Studies) to understand how error correction in science works and what obstacles it faces. For this purpose, we aim to trace claims and corrections in various channels of scientific communication (journals, social media, advertisements, conference programs, etc.) via natural language processing.
The challenge is to build data sets, models and tools that enable organising and analysing the rapidly evolving ecology of online comments complementary to conventional scientific records: - This means not only counting references to a document but also assessing and leveraging the content of both cited and citing document. - This means not only identifying named entity, claims and counter claims but also extracting structured knowledge from text. - This means not only taking advantage of existing data to learn models but also building tools for creation and annotation of new sets of data so to train advance language models.
Project objectives
Citations are an important indicator of the state of a scientific field. They reflect how authors frame their work and influence its adoption by future researchers. However, despite recent work in NLP [Bakhti2018,Jurgens2016,Pride2019,Yu2020], citation behaviour and how it can be used to point out error correction lack large scale and deep citation analyses.
The objective of this PhD is to design new NLP method to detect and qualify citations and extract citation network in scientific research.
[Bakhti2018] Bakhti, K., Niu, Z., Yousif, A., & Nyamawe, A. S. (2018, August). Citation function classification based on ontologies and convolutional neural networks. In International Workshop on Learning Technology for Education in Cloud (pp. 105-115). Springer, Cham. [Jurgens2016] Jurgens, D., Kumar, S., Hoover, R., McFarland, D., & Jurafsky, D. (2016). Citation classification for behavioral analysis of a scientific field. arXiv preprint arXiv:1609.00435. [Pride2019] Pride, D., Knoth, P., & Harag, J. (2019, June). ACT: an annotation platform for citation typing at scale. In 2019 ACM/IEEE Joint Conference on Digital Libraries (JCDL) (pp. 329-330). IEEE. [Yu2020] Yu, W., Yu, M., Zhao, T., & Jiang, M. (2020, April). Identifying referential intention with heterogeneous contexts. In Proceedings of The Web Conference 2020 (pp. 962-972).
Skills
Master 2 in Natural Language Processing, computer science or data science. Programming experience in Python and in a deep learning framework. Previous experience in NER, RE and dataset manipulation would be a plus.
Scientific environment
The thesis will be conducted within the Sigma and Getalp teams of the LIG laboratory (http://sigma.imag.fr/ and https://lig-getalp.imag.fr/). The recruited person will be welcomed within the teams which offer a stimulating, multinational and pleasant working environment. The means to carry out the PhD will be provided both in terms of missions in France and abroad and in terms of equipment (personal computer, access to the LIG GPU servers). The person will also be required to collaborate with several teams involved in the ERC Nanobubbles project, in particular with researchers from the IRIT lab (Toulouse, France), University of Paris Sorbonne as well as researchers from Maastricht University, Radboud Universiteit and University of Twente based in the Netherlands.
Instructions for applying
Applications are expected until July 5th, 2021. They must contain: CV + letter/message of motivation + master notes + letter(s) of recommendation; and be addressed to Cyril Labbé (cyril.labbe@imag.fr), François Portet (Francois.Portet@imag.fr) and Yasemin J. Erden (y.j.erden@utwente.nl).
Applications will be considered on the fly. It is therefore advisable to apply as soon as possible.
|
6-33 | (2021-06-27) PhD position at Université du Mans, France
Sujet de thèse dans le cadre d?un co-financement entre le projet Européen SELMA porté par le LIA et Le Mans Université, encadrée par Anthony Larcher, Yannick Estève et Marie Tahon.
Titre: Apprentissage actif, interprétation et contrôle pour la synthèse neuronale de parole expressive
Laboratoire d?accueil : LIUM (https://lium.univ-lemans.fr)
Site : Le Mans
Début de la thèse : septembre 2021
La thèse aura lieu au Laboratoire d?Informatique de l?Université du Mans (LIUM) dans l?équipe LST (Language and Speech Technology) et au Laboratoire d?Informatique d?Avignon (LIA). Le candidat sera basé au Mans et des séjours à Avignon seront prévus régulièrement. Le Laboratoire Informatique d?Avignon est partenaire du projet européen SELMA (https://selma-project.eu)
Profil du candidat : Le candidat devra être motivé pour travailler sur le langage écrit et parlé, et montrer un intérêt pour la synthèse de parole. Il devra avoir Master en Informatique, une expérience en machine learning sera appréciée.
L?objectif principal du projet est de proposer, développer et valider des méthodes qui permettent 1) de générer de la parole expressive à partir d?une consigne donnée par l?utilisateur soit à l?aide de systèmes text-to-speech, soit de la conversion de voix ; et 2) d?interagir avec le système au cours de l?apprentissage et lors de l?inférence pour corriger les sorties audio du système. Dans un premier temps, nous étudierons la visualisation et l?interprétation des représentations latentes apprises par un modèle neuronal état de l?art (Tacotron + WaveNet) en termes de prosodie, locuteur, expressivité et prononciation. Il faudra définir des éléments de contrôle utilisateur qui pourront prendre la forme d?annotations et seront ensuite intégrés dans le corpus d?apprentissage à l?aide de techniques tels que l?adaptation de paramètres acoustique, les embeddings, les mécanismes d?attention, ou bien l?apprentissage de modèles intermédiaires. Parallèlement, des architectures neuronales compatibles avec l?apprentissage actif (renforcement des modèles ou adaptation au domaine) seront proposés, et il faudra déterminer les stratégies les plus pertinentes pour l?apprentissage actif. Enfin, une part importante des travaux consistera à évaluer la synthèse produite, dans un contexte de livres audio ou bien de contenu journalistique.
Pour candidater : Envoyer CV + lettre de motivation avant le 10 juillet 2021 à :
anthony.larcher@univ-lemans.fr, yannick.esteve@univ-avignon.fr et marie.tahon@univ-lemans.fr
Marie Tahon Maître de Conférence / Assistant Professor Laboratoire Informatique de l?Université du Mans (LIUM) Tél. +33 (0)2 43 83 38 44 Avenue Olivier Messiaen, 72085 - LE MANS Cedex 09 http://perso.univ-lemans.fr/~mtahon/
|
6-34 | (2021-06-30) PhD position at Orange France
Candidater : https://orange.jobs/jobs/offer.do?joid=101323&lang=FR
Thèse - Suivi de l'état du dialogue dans un contexte dialogique long et en alignement avec les bases de connaissances - F/H
Votre rôle est d'effectuer un travail de thèse sur le sujet de recherche : Suivi de l'état du dialogue dans un contexte dialogique long et en alignement avec les bases de connaissances.
La compréhension du langage naturel est un composant fondamental des systèmes de dialogue automatiques [1,2]. Deux types de compréhension de dialogue sont identifiés: la compréhension hors contexte (un seul énoncé) et dans le contexte dialogique (plusieurs énoncés). Plusieurs solutions industrielles rendent les dialogues plus naturels grâce à la brique de compréhension hors contexte ou avec très peu de contexte (SIRI, Amazon Alexa, Cortana, Orange Djingo, RASA etc.). Les dialogues pour l'assistance technique Orange sont très complexes : ils ont en moyenne 163 tours de parole (énoncés), 2230 tokens (l'unité minimale ou morceaux de mots) en moyenne.
La compréhension du langage naturel dans un contexte dialogique long est toujours un axe de recherche ouvert [3] car il s'agit de concevoir des architectures d'apprentissage profond complexes, performantes et optimales.
La compréhension hors contexte est généralement traitée comme la projection de l'énoncé de l'utilisateur vers un modèle sémantique, au travers par exemple d'une classification de son intention et de l'extraction des valeurs des slots associés [4]. Cette représentation, contextualisée dans l'historique du dialogue, correspond à l'état de l'utilisateur tel que perçu par le système et s'appelle « Dialogue State Tracking (DST) » en anglais ou suivi de l'état du dialogue. Les approches probabilistes appellent cette brique la trace de l'état de croyance, « Belief State Tracking » ou simplement « Belief Tracking » (BT). Un challenge, (« Dialogue State Tracking » (DST) challenge) a été lancé en 2012 pour susciter le développement de nouveaux modèles de BT pour un système de dialogue vocal, prenant en compte le bruit de la reconnaissance de la parole. Depuis, des approches ont été proposées pour favoriser le transfert entre domaines pour les dialogues textuels (chatbots) et ont évolué en tirant parti des méthodes d'apprentissage automatique des Support Vector Machines [5] au Deep Learning [3,6].
Les verrous à résoudre sont :
traiter des conversations longues traiter l'alignement avec les bases de connaissance favoriser le transfert de domaine pour les applications multi-domaine détecter des sujets hors domaine et traiter des nouveaux domaines
Les conversations longues restent un problème ouvert car ces approches nécessitent beaucoup de mémoire et sont gourmandes en données. On s'intéresse à l'étude de l'apprentissage sans exemples, zero-shot learning pour pouvoir développer rapidement des systèmes de dialogue sur de nouveaux domaines.
L'étude du suivi de l'état du dialogue pour les contextes longs s'inscrit naturellement dans les efforts d'investissement qu'Orange met en oeuvre dans le domaine de l'Intelligence Artificielle.
[1] Williams, Jason D et Steve Young (2007). « Partially observable Markov decision processes for spoken dialog systems ». In: Computer Speech & Language 21.2.
[2] Sarikaya, Ruhi, Geoffrey E Hinton et Anoop Deoras (2014). « Application of deep belief networks for natural language understanding ». In: IEEE/ACM.
[3] Heck, Michael et al. (juil. 2020). « TripPy: A Triple Copy Strategy for Value Independent Neural Dialog State Tracking ». SigDIAL, p. 35-44.
[4] Rojas-Barahona, Lina M. et al. (déc. 2016). « Exploiting Sentence and Context Representations in Deep Neural Models for Spoken Language Understanding ». CoLING.
[5] Henderson, Matthew, Blaise Thomson et Jason Williams (2014). « The second dialog state tracking challenge ». SIGDIAL. 263. [6] Budzianowski, Pawe? et al. (2018). « MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling ». EMNLP.
Profil :
Vous avez suivi un cursus d'ingénieur et/ou Master de Recherche, avec des connaissances dans l'apprentissage automatique et dans au moins l'un des domaines de compétences cités.
Une première expérience de mise en oeuvre d'algorithmes d'apprentissage neuronal (dans le cadre d'un stage par exemple) serait un plus. Vous avez des compétences dans les domaines de l'Intelligence Artificielle, de l'apprentissage automatique et particulièrement dans l'apprentissage profond.
Vous disposez d'un bon niveau en mathématiques (optimisation numérique, statistiques, probabilités, etc.).
Vous maîtrisez le développement logiciel.
Vous maîtrisez l'anglais lu, écrit, parlé.
Vous êtes curieux-se, attiré-e par les nouvelles technologies, et prêt-e à suivre le rythme de leurs évolutions.
Vous aimez le travail en équipe, au sein de projets pluridisciplinaires, et contribuer à un objectif commun, tout en étant autonome sur les activités qui sont les vôtres.
Vous avez de bonnes capacités d'analyse et de synthèse.
Maîtriser un des outils d'apprentissage profond suivants : Torch, pyTorch, TensorFlow, MXNet serait un plus.
Vous aimez communiquer le résultat de vos travaux à travers de rapports écrits et des présentations orales.
Contexte
Vous rejoindrez un équipe spécialisée en dialogue, composée d'une quinzaine de personnes : chercheurs, data scientists, architectes, développeurs, thésards et stagiaires. entité
Orange est un acteur clé de l'innovation numérique. Dans un secteur des technologies de l'information et de la communication qui connaît un bouleversement de sa chaîne de valeur, avec la multiplication des acteurs et l'apparition de nouveaux modèles économiques, l'innovation constitue un levier majeur de croissance pour Orange.
Au sein de la Division Orange Innovation dont l'ambition est de porter plus loin l'innovation d'Orange et de renforcer son leadership technologique, vous travaillerez chez DATA IA au sein de l'équipe NADIA (Natural Dialogue Interaction), qui est en charge du développement de systèmes de dialogue et qui conduit des travaux de recherche sur le dialogue en langage naturel notamment avec l'utilisation des techniques d'apprentissage (renforcement, renforcement inversé, supervisé et non supervisé).
|
6-35 | (2021-06-12) Tenure-Track Professorship at the University of Erlangen (succession of Prof. Nöth)
Tenure-Track Professorship at the University of Erlangen (succession of Prof. Nöth);
Intelligent Speech Interfaces - Assistant Professorship with Tenure Track https://www.fau.eu/people/careers-human-resources/professorships/#collapse_10
|
6-36 | (2021-06-16) Ingenieur de développement INRIA Bordeaux France
Ingénieur.e développement datascience - Inria Bordeaux Sud-Ouest
Mission: Conception d’une architecture logicielle pour un outil IA en ingénierie
biomédicale (analyse et classification de voix pathologiques)
Type de contrat : CDD
Durée : 2 ans (possibilité de prolongation)
Début : à partir du 1er septembre 2021
Date limite de candidature : 31 juillet 2021
Lieu : Inria Bordeaux Sud-Ouest
Niveau de diplôme exigé : Bac + 5 ou équivalent
Autre diplôme apprécié : thèse de doctorat
Niveau d'expérience souhaité : au moins 2 ans (comme ingénieur.e ou postdoc)
Fonction : Ingénieur scientifique contractuel
Salaire brut mensuel : 2632€ à 3543€, selon diplômes et expérience professionnelle
Candidature : https://jobs.inria.fr/public/classic/fr/offres/2021-03484
Responsable : Khalid Daoudi (khalid.daoudi@inria.fr)
Contexte et atouts du poste
Inria, institut national de recherche dédié au numérique, promeut l’excellence scientifique au service du
transfert technologique et de la société.
Inria emploie 2700 collaborateurs issus des meilleures universités mondiales, qui relèvent les défis des sciences
informatiques et mathématiques. Son modèle agile lui permet d’explorer des voies originales avec ses partenaires
industriels et académiques, et de répondre aux enjeux pluridisciplinaires et applicatifs de la transition numérique.
Engagé auprès des acteurs de l’innovation, Inria crée les conditions de rencontres profitables entre recherche
publique, R&D privée et entreprises. Inria transfère vers les startup, les PME et les grands groupes ses résultats et ses
compétences, dans des domaines tels que la santé, les transports, l’énergie, la communication, la sécurité et la protection
de la vie privée, la ville intelligente, l’usine du futur... Inria développe aussi une culture entrepreneuriale ayant conduit à
la création de 120 startup.
Le centre Inria Bordeaux Sud-Ouest est un des neuf centres d’Inria et compte 20 équipes de recherche. Le
centre Inria est un acteur majeur et reconnu dans le domaine des sciences numériques. Il est au coeur d’un riche
écosystème de R&D et d’innovation : PME fortement innovantes, grands groupes industriels, pôles de compétitivité,
acteurs de la recherche et de l’enseignement supérieur.
GEOSTAT est une équipe de recherche Inria dont la thématique de recherche est le traitement de signaux
naturels complexes, notamment en biophysique (geostat.bordeaux.inria.fr).
Mission confiée
Plusieurs maladies et pathologies peuvent causer des dysfonctionnements ou des altérations dans la production
de la parole. Les plus connues sont les maladies neurodégénératives (telles que les maladies de Parkinson et
d’Alzheimer) et les maladies respiratoires (telles que l’asthme, la BPCO ou la Covid-19). On parle alors de troubles de
la parole ou de parole pathologique.
Il est maintenant établi que certaines de ces maladies se caractérisent par une manifestation précoce des
troubles de la parole. Le développement de biomarqueurs objectifs vocaux est devenu ainsi un enjeu majeur pour l’aide
au diagnostic et suivi de ces maladies. La mission de l’ingénieur(e) recruté(e) s’inscrit dans ce cadre.
L’objectif de la mission est de concevoir une architecture logicielle, en Python, pour :
1 développer une boîte à outils générique de traitement du signal dédiée à l’analyse de la parole pathologique ;
2 implémenter un biomarqueur vocal de la fonction respiratoire en utilisant des techniques d’apprentissage
statistique, dont le Deep Learning.
Cette dernière tâche s’inscrit dans le cadre d’un projet de recherche clinique en partenariat avec l’AP-HP
(Assistance Publique - Hôpitaux de Paris), notamment le service de pneumologie et de réanimation de L'hôpital La
Pitié-Salpêtrière. Le but de ce projet est le développement d’un biomarqueur vocal de l’état respiratoire et de son
évolution pour l’aide au télé-suivi de patients atteints d’une affection respiratoire, dont la Covid-19.
Principales activités
Pour des raisons de sécurité et de confidentialité, les données vocales et cliniques des patients sont hébergées
sur les serveurs EDS (Entrepôt de Données de Santé) de l’AP-HP.
La première tâche sera ainsi de développer une API permettant la communication avec l’infrastructure
d’hébergement.
La deuxième tâche sera d’implémenter des techniques éprouvées d’analyse de la parole pathologies puis
d’autres issus de recherches récentes. Cette tâche s’appuiera, le cas échéant, sur Parselmouth
(parselmouth.readthedocs.io/en/stable/) qui est une librairie Python pour Praat (www.fon.hum.uva.nl/praat/).
La troisième étape consistera à implémenter et expérimenter des techniques d’apprentissage statistique en
utilisant les données de patients. Cette tâche s’appuiera sur les framework habituels de Machine Learning (TensorFlow,
PyTorch, Scikitlearn).
Encadrement
L’ingénieur.e disposera d’un encadrement scientifique, par Khalid Daoudi de l’équipe GEOSTAT, et technique
par Dan Dutartre et François Rué du Service d'Expérimentation et de Développement (SED) d’Inria-Bordeaux.
Compétences
Être titulaire d’un diplôme d’ingénieur et/ou doctorat en sciences du numérique
Disposer d’une expérience significative dans le développement ou le pilotage d’un projet logiciel en python.
. Disposer d’une formation solide en apprentissage statistique (Machine Learning) ainsi que d’une expérience notable
dans ce domaine ;
. Disposer d’une expertise solide en développement logiciel pour être en capacité de s’adapter à différents types
langages des plus standards (Python, C, C++) ; une forte compétence en python est requise ;
. Des connaissances en traitement du signal seraient un plus très apprécié ;
. Maîtriser les concepts, la méthodologie et les outils de la qualité logicielle ;
. Maîtriser les méthodologies de gestion de projet logiciel collaboratif ;
. Maîtriser les méthodologies d’architectures logicielles modulaires ;
. Excellent relationnel ;
. Savoir travailler en équipe pluridisciplinaires ;
. Savoir s’adapter au contexte projet ;
. Être autonome dans son organisation personnelle et le reporting ;
. Avoir une bonne communication écrite et orale en français ;
. Maîtriser l’anglais technique et scientifique
|
6-37 | (2021-07-01) Internship at Naver Labs, Grenoble, France
https://europe.naverlabs.com/job/unsupervised-speech-to-text-translation-using-adapter-modules/
Unsupervised Speech-to-Text Translation using Adapter Modules ? Internship
Description
Adapter layers have recently proven to be flexible and lightweight mechanisms for multi-lingual translation models. In this internship we plan to explore their use for speech-to-text translation as a way of leveraging mono-lingual data to be able to translate from/to new languages in an unsupervised way.
Required skills
- PhD or research master student, in NLP, speech or machine learning with an interest on language technologies - Familiarity with modern machine learning, as applied to NLP. Evidenced by publications in the domain. - Familiarity with deep learning frameworks and python.
References
Application instructions
Please note that applicants must be registered students at a university or other academic institution and that this establishment will need to sign an 'Internship Convention' with NAVER LABS Europe before the student is accepted.
You can apply for this position online. Don't forget to upload your CV and cover letter before you submit. Incomplete applications will not be accepted.
About NAVER LABS
NAVER LABS is a world class team of self-motivated and highly engaged researchers, engineers and interface designers collaborating together to create next generation ambient intelligence technology and services that are rich with the organic understanding they have of users, their contexts and situations.
Since 2013 LABS has led NAVER?s innovation in technology through products such as the AI-based translation app ?Papago?, the omni-tasking web browser ?Whale?, the virtual AI assistant ?WAVE?, in-vehicle information entertainment system ?AWAY? and M1, the 3D indoor mapping robot.
The team in Europe is multidisciplinary and extremely multicultural specializing in artificial intelligence, machine learning, computer vision, natural language processing, UX and ethnography. We collaborate with many partners in the European scientific community on R&D projects.
NAVER LABS Europe is located in the south east of France in Grenoble. The notoriety of Grenoble comes from its exceptional natural environment and scientific ecosystem with 21,000 jobs in public and private research. It is home to 1 of the 4 French national institutes in AI called MIAI (Multidisciplinary Innovation in Ai) It has a large student community (over 62,000 students) and is a lively and cosmopolitan place, offering a host of leisure opportunities. Grenoble is close to both the Swiss and Italian borders and is the ideal place for skiing, hiking, climbing, hang gliding and all types of mountain sports.
|
6-38 | (2021-07-02) PhD position at LIG, Grenoble, France
Contexte:
Le projet ANR PROPICTO vise à développer un axe de recherche autour de la communication alternative et augmentée en se focalisant sur la transcription automatique de la parole sous forme pictographique. PROPICTO répond à la fois à des besoins forts dans le domaine du handicap et relève de nombreux défis de recherche autour du traitement automatique de la langue naturelle. PROPICTO a la volonté d'être pluridisciplinaire en coopérant avec des linguistes et le milieu du handicap. La finalité du projet est de proposer un système qui est capable de transcrire directement de la parole sous la forme d?une suite de pictogrammes.
La thèse sera co-encadrée par Benjamin Lecouteux et Maximin Coavoux
Sujet:
Cette thèse a pour objectif principal de développer un module d?analyse syntaxique automatique qui sera intégré dans la chaîne de traitement parole->pictogrammes mise en ?uvre dans le projet PROPICTO. L?analyse de la parole spontanée pose de nombreux problèmes pour le TAL (disfluences, chevauchements, segmentation en phrases). Par ailleurs, la grande majorité des travaux en analyse syntaxique automatique se concentrent sur des jeux de données issues de textes écrits.
Dans un premier temps, nous proposons d?évaluer les méthodes état-de-l?art en analyse syntaxique sur les treebanks de parole existants pour le français, en particulier en utilisant des modèles de langage préentraînés tels que FlauBERT (Le et al 2019). Dans un second temps, nous proposons de poursuivre 2 axes de recherche : - Analyse end-to-end : dans un contexte applicatif, une partie des erreurs de l?analyse syntaxique sont liées à des erreurs de reconnaissance de la parole (propagation d?erreurs). Nous proposons (i) d?étudier si l?ajout d?informations sur le signal sonore permettent de réduire la propogation d?erreur (ii) d?étudier la faisabilité d?une approche end-to-end qui prédirait conjointement la transcription du signal sonore et son analyse syntaxique. - Analyse syntaxique incrémentale : les analyseurs état-de-l'art actuels ne sont pas incrémentaux, ils ont besoin d'avoir accès à la phrase entière pour commencer l'analyse (modèle de langue préentraîné bidirectionnel). Dans le cadre applicatif « online » de PROPICTO, il est intéressant de considérer des algorithmes d?analyse syntaxique qui puissent commencer l?analyse au fur et à mesure où arrive la phrase d?input, à la manière de certains systèmes d?analyse par transition. Cela rend l?utilisation de modèles bidirectionnels (FlauBERT) impossibles, et nécessitera de développer des stratégies pour garantir la robustesse de l?analyseur.
Profil recherché:
- Master ayant une forte composante Traitement Automatique des Langues ou linguistique computationnelle - Expérience en programmation et machine learning pour le TAL - Bonne connaissance du français
Détails pratiques:
- Début de la thèse envisagé entre septembre et novembre 2021 - Contrat doctoral à temps plein au LIG (équipe Getalp) pour 3 ans (salaire: min 1768e brut mensuel, plus en cas d'enseignement) - Date limite pour postuler: 29 juin - Pour postuler, le dossier de candidature doit comprendre: cv, lettre de motivation, notes de master. Les candidat?es sélectionné?es devront également transmettre leur mémoire de master (si disponible).
Contacts (pour toutes questions ou pour postuler): maximin.coavoux@univ-grenoble-alpes.fr et benjamin.lecouteux@univ-grenoble-alpes.fr
|
6-39 | (2021-07-02) PhD position at LIG Grenoble, France
encadrée par Benjamin Lecouteux, Didier Schwab et Emmanuelle Esperança-Rodier
Traduction automatique de la parole vers des pictogrammes.
PROPICTO vise à développer un axe de recherche autour de la communication alternative et augmentée en se focalisant sur la transcription automatique de la parole sous forme pictographique. PROPICTO répond à la fois à des besoins forts dans le domaine du handicap et relève de nombreux défis de recherche autour du traitement automatique de la langue naturelle. PROPICTO a la volonté d?être pluridisciplinaire en coopérant avec des linguistes et le milieu du handicap. La finalité du projet est de proposer un système qui est capable de transcrire directement de la parole sous la forme d?une suite de pictogrammes.
Cette thèse sera axée sur la traduction de l?oral vers des ensembles de pictogrammes.
L?un des verrous scientifique de cette thèse est de chercher à pallier la quantité limitée d?exemples sous forme de pictogrammes et de corpus parole/pictogrammes.
Les approches utilisées s?inspireront dans un premier temps des approches de la traduction de la parole massivement multilingue où d?autres langues peuvent aider à traduire une langue pour laquelle les données sont rares.
Les aspects simplification de la langue seront également abordées dans ce sujet et appuyées par une autre thèse portant sur l?analyse syntaxique de l?oral.
Parallèlement au déroulement de cette thèse, des récoltes de corpus au sein de différentes institutions seront réalisées pour obtenir des paires parole/pictogrammes et répondre aux attentes en situation réelle.
L?évaluation des méthodes sera également une dimension importante de cette thèse et pourra s?inspirer, par exemple, des méthodes d?évaluation de la traduction automatique.
Profil recherché:
- Solide expérience en programmation & machine learning pour le TAL, notamment l?apprentissage profond
- Master ayant une composante Traitement Automatique des Langues ou linguistique computationnelle
- Bonne connaissance du français
Détails pratiques:
- Début de la thèse entre septembre et novembre 2021
- Contrat doctoral à temps plein au LIG (équipe Getalp) pour 3 ans (salaire: min 1768?e brut mensuel)
Environnement scientifique/
La thèse sera menée au sein de l'équipe Getalp du laboratoire LIG (https://lig-getalp.imag.fr/). La personne recrutée sera accueillie au sein de l?équipe qui offre un cadre de travail stimulant, multinational et agréable.
Les moyens pour mener à bien le doctorat seront assurés tant en ce qui concerne les missions en France et à l?étranger qu?en ce qui concerne le matériel (ordinateur personnel, accès aux serveurs GPU du LIG, Grille de calcul Jean Zay du CNRS).
/Comment postuler ?/
Les candidats doivent être titulaires d'un Master en informatique ou en traitement automatique du langage naturel (ou être sur le point d'en obtenir un). Ils doivent avoir une bonne connaissance des méthodes d?apprentissage automatique et idéalement une expérience en collecte et gestion de corpus. Ils doivent également avoir une bonne connaissance de la langue française. Une expérience dans le domaine du traitement automatique de la parole ou de la traduction automatique (neuronaux ou pas ) et/ou une sensibilisation au milieu du handicap serait un plus.
Références :
LeBenchmark: A Reproducible Framework for Assessing Self-Supervised Representation Learning from Speech Solene Evain, Ha Nguyen, Hang Le, Marcely Zanon Boito, Salima Mdhaffar, Sina Alisamir, Ziyi Tong, Natalia Tomashenko, Marco Dinarelli, Titouan Parcollet, Alexandre Allauzen, Yannick Esteve, Benjamin Lecouteux, Francois Portet, Solange Rossato, Fabien Ringeval, Didier Schwab, Laurent Besacier
Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, et al.. FlauBERT: Unsupervised Language Model Pre-training for French. LREC, 2020, Marseille, France. ?hal-02890258?
Hang Le, Juan Pino, Changhan Wang, Jiatao Gu, Didier Schwab, et al.. Dual-decoder Transformer for Joint Automatic Speech Recognition and Multilingual Speech Translation. COLING 2020 (long paper), Dec 2020, Virtual, Spain. ?hal-02991564?
Didier Schwab, Pauline Trial, Céline Vaschalde, Loïc Vial, Benjamin Lecouteux. Apporter des connaissances sémantiques à un jeu de pictogrammes destiné à des personnes en situation de handicap : Un ensemble de liens entre Wordnet et Arasaac, Arasaac-WN. TALN 2019, 2019, Toulouse, France. ?hal-02127258?
|
6-40 | (2021-07-04) Post-doctoral research position - L3i - La Rochelle France
-- Post-doctoral research position - L3i - La Rochelle France
---------------------------------------------------------------------------------------------------------------------------
Title : Emotion detection by semantic analysis of the text in comics speech balloons
The L3i laboratory has one open post-doc position in computer science, in the specific field of natural language processing in the context of digitised documents.
Duration: 12 months (an extension of 12 months will be possible)
Position available from: As soon as possible, 2021
Salary: approximately 2100 ? / month (net)
Place: L3i lab, University of La Rochelle, France
Specialty: Computer Science/ Document Analysis/ Natural Language Processing
Contact: Jean-Christophe BURIE (jcburie [at] univ-lr.fr) / Antoine Doucet (antoine.doucet [at] univ-lr.fr)
Position Description
The L3i is a research lab of the University of La Rochelle. La Rochelle is a city in the south west of France on the Atlantic coast and is one of the most attractive and dynamic cities in France. The L3i works since several years on document analysis and has developed a well-known expertise in ?Bande dessinée?, manga and comics analysis, indexing and understanding.
The work done by the post-doc will take part in the context of SAiL (Sequential Art Image Laboratory) a joint laboratory involving L3i and a private company. The objective is to create innovative tools to index and interact with digitised comics. The work will be done in a team of 10 researchers and engineers.
The team has developed different methods to extract and recognise the text of the speech balloons. The specific task of the recruited researcher will be to use Natural Language Processing strategies to analyse the text in order to identify emotions expressed by a character (reacting to the utterance of another speaking character) or caused by it (talking to another character). The datasets will be collections of comics in French and English.
Qualifications
Candidates must have a completed PhD and a research experience in natural language processing. Some knowledge and experience in deep learning is also recommended.
General Qualifications
? Good programming skills mastering at least one programming language like Python, Java, C/C++
? Good teamwork skills
? Good writing skills and proficiency in written and spoken English or French
Applications
Candidates should send a CV and a motivation letter to jcburie [at] univ-lr.fr and antoine.doucet [at] univ-lr.fr.
|