ISCA - International Speech
Communication Association


ISCApad Archive  »  2021  »  ISCApad #273  »  Jobs  »  (2020-12-05) 5/6 months Internship, LIS-Lab, Université Aix-Marseille, France

ISCApad #273

Thursday, March 11, 2021 by Chris Wellekens

6-21 (2020-12-05) 5/6 months Internship, LIS-Lab, Université Aix-Marseille, France
  

Deep learning for speech perception
(Apprentissage profond pour la perception de la parole)

Length of internship: 5-6 months
Start date: between January and March
Contact: Ricard Marxer

Context
---
Recent deep learning (DL) developments have been key to breakthroughs in many artificial
intelligence (AI) tasks such as automatic speech recognition (ASR) [1] and speech
enhancement [2]. In the past decade the performance of such systems on reference corpora
has consistently increased driven by improvements in data-modeling and representation
learning techniques. However our understanding of human speech perception has not
benefited from such advancements. This internship sets the ground for a project that
proposes to gain knowledge about our perception of speech by means of large-scale
data-driven modeling and statistical methods. By leveraging modern deep learning
techniques and exploiting large corpora of data we aim to build models capable of
predicting human comprehension of speech at a higher level of detail than any other
existing approaches [3].

This internship is funded by the ANR JCJC project MIM (Microscopic Intelligibility
Modeling). It aims at predicting and describing speech perception at the stimuli,
listener and sub-word level. The project will also fund a PhD position, the call for
applications will be published in the coming months. A potential followup in PhD could be
foreseen for the successful candidate of this internship.

Subject
---
In an attempt to use DL methods for speech perception tasks, this internship aims at
participating in the first Clarity challenge. This challenge tackles the difficult task
of performing speech enhancement for optimising intelligibility of a speech signal in
noisy conditions. The challenge opens in January 2021, it is the first of its kind with
the objective of advancing hearing-aid signal processing and the modelling of
speech-in-noise perception.

Several research directions will be explored, including but not limited to:
- perceptual-based loss functions
- advanced speech representation learning pipelines
- DL-based multichannel processing techniques

Given that the baseline and data of the challenge are to be published in January 2021 and
the difficulty of the task remains uncertain, a backup plan is foreseen for this
internship that is more tightly related to the context of the ANR project.

In the MIM project, we focus on corpora of consistent confusions: speech-in-noise stimuli
that evoke the same misrecognition among multiple listeners.  In order to simplify this
first approach to microscopic  intelligibility  prediction,  we  will  restrict  to 
single-word  data.   This  should  reduce  the  lexical factors to aspects such as usage
frequency and neighborhood density, significantly limiting the complexity of the required
language model. Consistent confusions are valuable experimental data about the human
speech perception process. They provide targets for how intelligibility models should
dif-ferentiate from automatic speech recognition (ASR) systems.  While ASR models are
optimised to recognise what has been uttered, the proposed models should output what has
been perceived by a set of listeners. A sub-task encompasses creating baseline models
that predict listeners? responses to the noisy speech stimuli. We will target predictions
at different levels of granularity such as predicting the type of confusion, which phones
are misperceived or how a particular phone is confused.

Several models regularly used in speech recognition tasks will be trained and evaluated
in predicting the misperceptions of the consistent confusion corpora. We will first focus
on well established models such as GMM-HMM and/or simple deep learning architectures.
Advanced neural topologies such as TDNNs, CTC-based or attention-based models will also
be explored, even though the relatively small amount of training data in the corpora is
likely to be a limiting factor. As a starting point we envisage solving the 3 tasks
described in [3] consisting of 1) predicting the probability of occurrence of
misrecognitions at each position of the word, 2) given the position, predicting a
distribution of particular phone misperceptions, and 3) predicting the words and the
number of times they have been perceived among a set of listeners.  Predictions will be
evaluated using the metrics also defined in [3] and random and oracle predictions will be
used as references. These baseline models will be trained using only in-domain data and
optimized on word recognition tasks.


Profile
---
The candidate shall have the following profile:
- Master 2 level or equivalent in one of the following fields: machine learning, computer
science, applied mathematics, statistics, signal processing
- Good English written and spoken language skills
- Programming skills, preferably in Python

Furthermore the ideal candidate would have:
- Experience in one of the main DL frameworks (e.g. PyTorch, Tensorflow)
- Notions in speech or audio processing

Application procedure
---
In order to apply send the following to the contact address ricard.marxer@lis-lab.fr:
- CV
- Motivation letter
- Latest grades transcript (M1 and the 1st semester of M2 if available)

References
---
[1] Barker, J., Marxer, R., Vincent, E., & Watanabe, S. (2017). The third ?CHiME? speech
separation and recognition challenge: Analysis and outcomes. Computer Speech & Language,
46, 605?626.
[2] Marxer, R., & Barker, J. (2017). Binary Mask Estimation Strategies for Constrained
Imputation-Based Speech Enhancement. In Proc. Interspeech 2017 (pp. 1988?1992).
[3] Marxer, R., Cooke, M., & Barker, J. (2015). A framework for the evaluation of
microscopic intelligibility models. In Proceedings of the Annual Conference of the
International Speech Communication Association, INTERSPEECH (Vol. 2015-January, pp.
2558?2562).


Back  Top


 Organisation  Events   Membership   Help 
 > Board  > Interspeech  > Join - renew  > Sitemap
 > Legal documents  > Workshops  > Membership directory  > Contact
 > Logos      > FAQ
       > Privacy policy

© Copyright 2024 - ISCA International Speech Communication Association - All right reserved.

Powered by ISCA